Study of Uncertainties in the Inversion Algorithms for Transverse Relaxation Distribution

Shanxue Chen, Ran Li, Jie Yu, Hong-zhi Wang, Xue-long Zhang
{"title":"Study of Uncertainties in the Inversion Algorithms for Transverse Relaxation Distribution","authors":"Shanxue Chen, Ran Li, Jie Yu, Hong-zhi Wang, Xue-long Zhang","doi":"10.1109/ICBBE.2010.5514753","DOIUrl":null,"url":null,"abstract":"Nuclear magnetic resonance (NMR) relaxation spectrum is often used as fingerprints of molecular species, structure and dynamics in the study of complex multiphase system. Inversion algorithms such as singular value decomposition (SVD), Non-negative least square (NNLS), Solid iteration rebuild technique (SIRT) have been widely used in analyzing NMR data to obtain a T1 or T2 spectrum. However, due to the ill-conditioned nature of such inversion, it is difficult to determine the reliability of the inversion result. The concrete model is realized in MATLAB according the thought of the above three algorithms in this article. We converged to the true distribution by matching up the inversion spectrum from a series of true decay data collected from the NMR analyst instrument and a noisy simulated model, then evaluated the effects of noise in the original NMR data.","PeriodicalId":6396,"journal":{"name":"2010 4th International Conference on Bioinformatics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 4th International Conference on Bioinformatics and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBBE.2010.5514753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Nuclear magnetic resonance (NMR) relaxation spectrum is often used as fingerprints of molecular species, structure and dynamics in the study of complex multiphase system. Inversion algorithms such as singular value decomposition (SVD), Non-negative least square (NNLS), Solid iteration rebuild technique (SIRT) have been widely used in analyzing NMR data to obtain a T1 or T2 spectrum. However, due to the ill-conditioned nature of such inversion, it is difficult to determine the reliability of the inversion result. The concrete model is realized in MATLAB according the thought of the above three algorithms in this article. We converged to the true distribution by matching up the inversion spectrum from a series of true decay data collected from the NMR analyst instrument and a noisy simulated model, then evaluated the effects of noise in the original NMR data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
横向松弛分布反演算法中的不确定性研究
在复杂多相体系的研究中,核磁共振弛豫谱常被用作分子种类、结构和动力学的指纹。奇异值分解(SVD)、非负最小二乘(NNLS)、实体迭代重建技术(SIRT)等反演算法已广泛应用于核磁共振数据分析以获得T1或T2谱。然而,由于这种反演的病态性质,很难确定反演结果的可靠性。本文根据以上三种算法的思想,在MATLAB中实现了具体的模型。通过将核磁共振分析仪采集的一系列真实衰减数据的反演谱与噪声模拟模型进行匹配,收敛到真实分布,并对原始核磁共振数据中噪声的影响进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of Codon Usage Bias in the Newly Identified DEV UL53 Gene Indoor Air Quality Assessment in an Art Gallery with an HVAC System Multi-Method Measurement on Mercury Concentration in Plants Optimization of Nutrition Condition for Biodegradation of Diesel Oil Using Response Surface Methodology Application of SWAT in Non-Point Source Pollution of Upper Xiliaohe Basin, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1