{"title":"Scattering and radiation singularities in epsilon-near-zero structures","authors":"F. Monticone, A. Alú","doi":"10.1109/APS.2016.7696153","DOIUrl":null,"url":null,"abstract":"We study the extreme and singular electromagnetic response of epsilon-near-zero (ENZ) structures. In particular, we show that ENZ-dielectric-ENZ multilayers can be designed to support: (a) singularities in their scattering spectrum, known as embedded eigenstates, which can be exploited for extreme light trapping in open systems, as well as for enhanced sensing; (b) peaks in their photonic density of states, or Van-Hove singularities, which determine strong enhancement of emission/radiation from small sources. Our findings shed light on the physics of these extreme electromagnetic effects, and represent an important step toward their application in various practical scenarios.","PeriodicalId":6496,"journal":{"name":"2016 IEEE International Symposium on Antennas and Propagation (APSURSI)","volume":"429 1","pages":"889-890"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Antennas and Propagation (APSURSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2016.7696153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We study the extreme and singular electromagnetic response of epsilon-near-zero (ENZ) structures. In particular, we show that ENZ-dielectric-ENZ multilayers can be designed to support: (a) singularities in their scattering spectrum, known as embedded eigenstates, which can be exploited for extreme light trapping in open systems, as well as for enhanced sensing; (b) peaks in their photonic density of states, or Van-Hove singularities, which determine strong enhancement of emission/radiation from small sources. Our findings shed light on the physics of these extreme electromagnetic effects, and represent an important step toward their application in various practical scenarios.