Comparison of multivariate analysis techniques in plastic injection moulding process

R. Ventura, X. Berjaga
{"title":"Comparison of multivariate analysis techniques in plastic injection moulding process","authors":"R. Ventura, X. Berjaga","doi":"10.1109/ETFA.2015.7301557","DOIUrl":null,"url":null,"abstract":"In this paper, we present a comparison between several statistical discriminant analysis techniques applied to a plastic injection moulding process for monitoring quality of injected moulded parts. Comparison among different ways of training the system can provide useful conclusions about the behaviour of the different models in poor conditions. The goal of this paper is to establish a baseline for comparing the performance between different algorithms. A wide variety of research objectives throughout the literature makes it difficult to provide a feasible comparison between results. The evaluation is intended to provide detailed, empirical information on the effectiveness and impact of different model parameters on the performance of the different approaches. The pros and cons of the approaches used are discussed. In order to predict the quality of a plastic part, we extract a set of salient features that characterise an injection cycle and then match these features against a database of stored examples of predefined classes by using supervised classification. The database was created from 199 real plastic injections without any overlap between training and testing datasets.","PeriodicalId":6862,"journal":{"name":"2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA)","volume":"12 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2015.7301557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we present a comparison between several statistical discriminant analysis techniques applied to a plastic injection moulding process for monitoring quality of injected moulded parts. Comparison among different ways of training the system can provide useful conclusions about the behaviour of the different models in poor conditions. The goal of this paper is to establish a baseline for comparing the performance between different algorithms. A wide variety of research objectives throughout the literature makes it difficult to provide a feasible comparison between results. The evaluation is intended to provide detailed, empirical information on the effectiveness and impact of different model parameters on the performance of the different approaches. The pros and cons of the approaches used are discussed. In order to predict the quality of a plastic part, we extract a set of salient features that characterise an injection cycle and then match these features against a database of stored examples of predefined classes by using supervised classification. The database was created from 199 real plastic injections without any overlap between training and testing datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
塑料注射成型过程多变量分析技术的比较
在本文中,我们提出了几种统计判别分析技术之间的比较应用于塑料注射成型过程中监测注塑件的质量。不同训练方法之间的比较可以提供关于不同模型在恶劣条件下的行为的有用结论。本文的目标是建立一个基线来比较不同算法之间的性能。在整个文献中,各种各样的研究目标使得很难在结果之间提供可行的比较。评估旨在提供关于不同模型参数对不同方法性能的有效性和影响的详细经验信息。讨论了所用方法的优缺点。为了预测塑料零件的质量,我们提取了一组表征注射周期的显著特征,然后通过使用监督分类将这些特征与预定义类的存储示例数据库进行匹配。该数据库是由199次真实的塑料注射创建的,训练和测试数据集之间没有任何重叠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Schedulability using native non-preemptive groups on an AUTOSAR/OSEK platform Towards an integrated use of simulation within the life-cycle of a process plant Engineering and operation made easy - a semantics and service oriented approach to building automation Control application for Internet of Things energy meter — A key part of integrated building energy management system A hybrid-based error detection technique for PLC-based Industrial Control Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1