{"title":"A CLASS OF S-STEP NON-LINEAR ITERATION SCHEME BASED ON PROJECTION METHOD FOR GAUSS METHOD","authors":"R. Vigneswaran, S. Kajanthan","doi":"10.37516/adv.math.sci.2019.0061","DOIUrl":null,"url":null,"abstract":"Various iteration schemes are proposed by various authors to solve nonlinear equations arising in the implementation of implicit Runge-Kutta methods. In this paper, a class of s-step non-linear scheme based on projection method is proposed to accelerate the convergence rate of those linear iteration schemes. In this scheme, sequence of numerical solutions is updated after each sub-step is completed. For 2-stage Gauss method, upper bound for the spectral radius of its iteration matrix was obtained in the left half complex plane. This result is extended to 3-stage and 4-stage Gauss methods by transforming the coefficient matrix and the iteration matrix to a block diagonal form. Finally, some numerical experiments are carried out to confirm the obtained theoretical results.","PeriodicalId":53941,"journal":{"name":"Advances and Applications in Mathematical Sciences","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances and Applications in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37516/adv.math.sci.2019.0061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Various iteration schemes are proposed by various authors to solve nonlinear equations arising in the implementation of implicit Runge-Kutta methods. In this paper, a class of s-step non-linear scheme based on projection method is proposed to accelerate the convergence rate of those linear iteration schemes. In this scheme, sequence of numerical solutions is updated after each sub-step is completed. For 2-stage Gauss method, upper bound for the spectral radius of its iteration matrix was obtained in the left half complex plane. This result is extended to 3-stage and 4-stage Gauss methods by transforming the coefficient matrix and the iteration matrix to a block diagonal form. Finally, some numerical experiments are carried out to confirm the obtained theoretical results.