{"title":"Top-Down ETD-MS Provides Unreliable Quantitation of Methionine Oxidation.","authors":"S. Tadi, J. Sharp","doi":"10.7171/jbt.19-3004-002","DOIUrl":null,"url":null,"abstract":"Methionine oxidation plays a critical role in many processes of biologic and biomedical importance, including cellular redox responses and stability of protein pharmaceuticals. Bottom-up methods for analysis of methionine oxidation can suffer from incomplete sequence coverage, as well as an inability to readily detect correlated oxidation between 2 or more methionines. However, the methodology for quantifying protein oxidation in top-down analyses is lacking. Previous work has shown that electron transfer dissociation (ETD)-based tandem mass spectrometry (MS/MS) fragmentation offers accurate and precise quantification of amino acid oxidation in peptides, even in complex samples. However, the ability of ETD-based MS/MS fragmentation to accurately quantify amino acid oxidation of proteins in a top-down manner has not been reported. Using apomyoglobin and calmodulin as model proteins, we partially converted methionines into methionine sulfoxide by incubation in H2O2. Using top-down ETD-based fragmentation, we quantified the amount of oxidation of various ETD product ions and compared the quantified values with those from traditional bottom-up analysis. We find that overall quantification of methionine oxidation by top-down MS/MS ranges from good agreement with traditional bottom-up methods to vast differences between the 2 techniques, including missing oxidized product ions and large differences in measured oxidation quantities. Care must be taken in transitioning ETD-based quantitation of oxidation from the peptide level to the intact protein level.","PeriodicalId":94326,"journal":{"name":"Journal of biomolecular techniques : JBT","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomolecular techniques : JBT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7171/jbt.19-3004-002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Methionine oxidation plays a critical role in many processes of biologic and biomedical importance, including cellular redox responses and stability of protein pharmaceuticals. Bottom-up methods for analysis of methionine oxidation can suffer from incomplete sequence coverage, as well as an inability to readily detect correlated oxidation between 2 or more methionines. However, the methodology for quantifying protein oxidation in top-down analyses is lacking. Previous work has shown that electron transfer dissociation (ETD)-based tandem mass spectrometry (MS/MS) fragmentation offers accurate and precise quantification of amino acid oxidation in peptides, even in complex samples. However, the ability of ETD-based MS/MS fragmentation to accurately quantify amino acid oxidation of proteins in a top-down manner has not been reported. Using apomyoglobin and calmodulin as model proteins, we partially converted methionines into methionine sulfoxide by incubation in H2O2. Using top-down ETD-based fragmentation, we quantified the amount of oxidation of various ETD product ions and compared the quantified values with those from traditional bottom-up analysis. We find that overall quantification of methionine oxidation by top-down MS/MS ranges from good agreement with traditional bottom-up methods to vast differences between the 2 techniques, including missing oxidized product ions and large differences in measured oxidation quantities. Care must be taken in transitioning ETD-based quantitation of oxidation from the peptide level to the intact protein level.