The Local Geometry of Orthogonal Dictionary Learning using L1 Minimization

Qiuwei Li, Zhihui Zhu, M. Wakin, Gongguo Tang
{"title":"The Local Geometry of Orthogonal Dictionary Learning using L1 Minimization","authors":"Qiuwei Li, Zhihui Zhu, M. Wakin, Gongguo Tang","doi":"10.1109/IEEECONF44664.2019.9049030","DOIUrl":null,"url":null,"abstract":"Feature learning that extracts concise and general- izable representations for data is one of the central problems in machine learning and signal processing. Sparse dictionary learning, also known as sparse coding, distinguishes from other feature learning techniques in sparsity exploitation, allowing the formulation of nonconvex optimizations that simultaneously uncover a structured dictionary and sparse representations. Despite the popularity of dictionary learning in applications, the landscapes of these optimizations that enable effective learning largely remain a mystery. This work characterizes the local optimization geometry for a simplified version of sparse coding where the L1 norm of the sparse coefficient matrix is minimized subject to orthogonal dictionary constraints. In particular, we show that the ground-truth dictionary and coefficient matrix are locally identifiable under the assumption that the coefficient matrix is sufficiently sparse and the number of training data columns is sufficiently large.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"110 1","pages":"1217-1221"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9049030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Feature learning that extracts concise and general- izable representations for data is one of the central problems in machine learning and signal processing. Sparse dictionary learning, also known as sparse coding, distinguishes from other feature learning techniques in sparsity exploitation, allowing the formulation of nonconvex optimizations that simultaneously uncover a structured dictionary and sparse representations. Despite the popularity of dictionary learning in applications, the landscapes of these optimizations that enable effective learning largely remain a mystery. This work characterizes the local optimization geometry for a simplified version of sparse coding where the L1 norm of the sparse coefficient matrix is minimized subject to orthogonal dictionary constraints. In particular, we show that the ground-truth dictionary and coefficient matrix are locally identifiable under the assumption that the coefficient matrix is sufficiently sparse and the number of training data columns is sufficiently large.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用L1最小化的正交字典学习的局部几何
特征学习是机器学习和信号处理的核心问题之一,它从数据中提取出简洁和通用的表示。稀疏字典学习,也称为稀疏编码,区别于稀疏性利用中的其他特征学习技术,它允许制定非凸优化,同时揭示结构化字典和稀疏表示。尽管字典学习在应用程序中很流行,但这些优化在很大程度上仍然是一个谜。这项工作表征了稀疏编码的简化版本的局部优化几何,其中稀疏系数矩阵的L1范数在正交字典约束下被最小化。特别是,我们证明了在系数矩阵足够稀疏和训练数据列数量足够大的假设下,基真字典和系数矩阵是局部可识别的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised learning by a "softened" correlation game: duality and convergence Radar Beampattern Design for a Drone Swarm A Statistical Approach to Dynamic Synchrony Analysis of Neuronal Ensemble Spiking [Copyright notice] Phase Transition Analysis for Covariance Based Massive Random Access with Massive MIMO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1