{"title":"Isolation and Identification of Cellulolytic Bacteria from Soil Sample and Their Antibiogram","authors":"B. Saha, S. Roy, F. Hossen","doi":"10.12691/AJMR-7-3-3","DOIUrl":null,"url":null,"abstract":"This investigation was focused to isolate and identify the effective cellulolytic soil inhabiting bacteria from the soil of waste disposal site of Noakhali Science and Technology University (NSTU) campus and Maijdee, Noakhali with evaluating their cellulase production ability. Eight cellulolytic bacteria were isolated and identified as potentially effective strain from thirty isolates of twenty samples and their antibiogram was also performed. In this investigation, the maximum carboxymethylcellulose hydrolysis capacities (HC value), for all the isolates, ranged from 1.40 to 2.18 mm whereas maximum clear zone size around the colony ranged from 4.0 mm to 10.0 mm. It was the indication of the highest cellulase production ability of these eight species by degrading cellulose where two isolates sample 2 (10-3) and sample 15 (10-3) displayed the maximum zone of clearance around the colony. The results also revealed that soil of the investigated area can be used, in near future, to produce cellulase enzyme which will be useful for industrial purposes, plant growth promotion and research. Antibiotic sensitivity test was used in the work to determine the sensitivity and resistance pattern of the isolates. The result reported several isolates resistance to commercially used antibiotics. The main reason of this bacterial resistance is the indiscriminate use of the antibiotics. From the microscopic examination, morphological characteristics and various biochemical tests, the isolates were identified as Bacillus spp, Bacillus cereus, Bacillus megaterium, Clostridium spp, Staphylococcus aureus, Actinomycetes spp, Pseudomonas aeruginosa, Acinetobacter spp.","PeriodicalId":7580,"journal":{"name":"American Journal of Microbiological Research","volume":"9 1","pages":"83-90"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Microbiological Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12691/AJMR-7-3-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This investigation was focused to isolate and identify the effective cellulolytic soil inhabiting bacteria from the soil of waste disposal site of Noakhali Science and Technology University (NSTU) campus and Maijdee, Noakhali with evaluating their cellulase production ability. Eight cellulolytic bacteria were isolated and identified as potentially effective strain from thirty isolates of twenty samples and their antibiogram was also performed. In this investigation, the maximum carboxymethylcellulose hydrolysis capacities (HC value), for all the isolates, ranged from 1.40 to 2.18 mm whereas maximum clear zone size around the colony ranged from 4.0 mm to 10.0 mm. It was the indication of the highest cellulase production ability of these eight species by degrading cellulose where two isolates sample 2 (10-3) and sample 15 (10-3) displayed the maximum zone of clearance around the colony. The results also revealed that soil of the investigated area can be used, in near future, to produce cellulase enzyme which will be useful for industrial purposes, plant growth promotion and research. Antibiotic sensitivity test was used in the work to determine the sensitivity and resistance pattern of the isolates. The result reported several isolates resistance to commercially used antibiotics. The main reason of this bacterial resistance is the indiscriminate use of the antibiotics. From the microscopic examination, morphological characteristics and various biochemical tests, the isolates were identified as Bacillus spp, Bacillus cereus, Bacillus megaterium, Clostridium spp, Staphylococcus aureus, Actinomycetes spp, Pseudomonas aeruginosa, Acinetobacter spp.