Toward a defect prediction model of exception handling method call structures

Puntitra Sawadpong
{"title":"Toward a defect prediction model of exception handling method call structures","authors":"Puntitra Sawadpong","doi":"10.1145/2638404.2638513","DOIUrl":null,"url":null,"abstract":"The ability to predict where faults are likely to arise in the source code can help guide test plans, reduce effort and cost, narrow the test space, and improve software quality. Our preliminary results show that exception handling code can be more risky than normal code. Therefore, in order to support more efficient testing of exception handling code, this extended abstract proposes a framework to predict faults from annotated exception handling method call structures. This framework will generate annotated exception call graphs of the whole system and calculate property-based software engineering measurement values. The framework will then predict the high risk area of the system by applying statistical modeling techniques to perform fault prediction.","PeriodicalId":91384,"journal":{"name":"Proceedings of the 2014 ACM Southeast Regional Conference","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM Southeast Regional Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2638404.2638513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The ability to predict where faults are likely to arise in the source code can help guide test plans, reduce effort and cost, narrow the test space, and improve software quality. Our preliminary results show that exception handling code can be more risky than normal code. Therefore, in order to support more efficient testing of exception handling code, this extended abstract proposes a framework to predict faults from annotated exception handling method call structures. This framework will generate annotated exception call graphs of the whole system and calculate property-based software engineering measurement values. The framework will then predict the high risk area of the system by applying statistical modeling techniques to perform fault prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探讨异常处理方法调用结构的缺陷预测模型
预测源代码中哪里可能出现错误的能力可以帮助指导测试计划,减少工作量和成本,缩小测试空间,并提高软件质量。我们的初步结果表明,异常处理代码可能比正常代码风险更大。因此,为了支持对异常处理代码更有效的测试,该扩展抽象提出了一个框架,可以从带注释的异常处理方法调用结构中预测错误。该框架将生成整个系统的带注释的异常调用图,并计算基于属性的软件工程度量值。然后,该框架将通过应用统计建模技术进行故障预测来预测系统的高风险区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ClearCommPrivacy DIP Bluu ReDPro ACM SE '22: 2022 ACM Southeast Conference, Virtual Event, April 18 - 20, 2022
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1