A robust optimization approach using Kriging metamodels for robustness approximation in the CMA-ES

J. Kruisselbrink, M. Emmerich, A. Deutz, Thomas Bäck
{"title":"A robust optimization approach using Kriging metamodels for robustness approximation in the CMA-ES","authors":"J. Kruisselbrink, M. Emmerich, A. Deutz, Thomas Bäck","doi":"10.1109/CEC.2010.5586235","DOIUrl":null,"url":null,"abstract":"This paper presents a study for using Kriging metamodeling in combination with Covariance Matrix Adaptation Evolution Strategies (CMA-ES) to find robust solutions. A general, archive based, framework is proposed for integrating Kriging within CMA-ES, including a method to utilize the covariance matrix of the CMA-ES in a straightforward way to improve the accuracy of the Kriging predictions without introducing much additional computational cost. Moreover, it adopts an elegant way to select appropriate archive points for building a local metamodel. The study shows that this Kriging metamodeling scheme for finding robust solutions outperforms common, straightforward approaches and is very useful when there is a limited budget of function evaluations. Though using the covariance matrix can improve the prediction quality, it has no significant effect on the overall quality of the optimization results.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"328 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5586235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

This paper presents a study for using Kriging metamodeling in combination with Covariance Matrix Adaptation Evolution Strategies (CMA-ES) to find robust solutions. A general, archive based, framework is proposed for integrating Kriging within CMA-ES, including a method to utilize the covariance matrix of the CMA-ES in a straightforward way to improve the accuracy of the Kriging predictions without introducing much additional computational cost. Moreover, it adopts an elegant way to select appropriate archive points for building a local metamodel. The study shows that this Kriging metamodeling scheme for finding robust solutions outperforms common, straightforward approaches and is very useful when there is a limited budget of function evaluations. Though using the covariance matrix can improve the prediction quality, it has no significant effect on the overall quality of the optimization results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Kriging元模型的CMA-ES鲁棒逼近鲁棒优化方法
本文研究了将Kriging元模型与协方差矩阵自适应进化策略(CMA-ES)相结合来寻找鲁棒解的方法。提出了一个通用的、基于存档的框架,用于在CMA-ES中集成Kriging,包括一种直接利用CMA-ES的协方差矩阵的方法,以提高Kriging预测的准确性,而不引入太多额外的计算成本。此外,它采用了一种优雅的方式来选择合适的存档点来构建本地元模型。研究表明,这种用于寻找鲁棒解的Kriging元建模方案优于常见的直接方法,并且在函数评估的预算有限时非常有用。虽然使用协方差矩阵可以提高预测质量,但对优化结果的整体质量没有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Step-Size Individualization: a Case Study for The Fish School Search Family A Genetic Ant Colony Optimization Algorithm for Inter-domain Path Computation problem under the Domain Uniqueness constraint A Simulated IMO-DRSA Approach for Cognitive Reduction in Multiobjective Financial Portfolio Interactive Optimization Applying Never-Ending Learning (NEL) Principles to Build a Gene Ontology (GO) Biocurator Many Layer Transfer Learning Genetic Algorithm (MLTLGA): a New Evolutionary Transfer Learning Approach Applied To Pneumonia Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1