S. Elangovan, J. Hartvigsen, F. Zhao, I. Bay, D. Larsen
{"title":"Materials development for SOEC","authors":"S. Elangovan, J. Hartvigsen, F. Zhao, I. Bay, D. Larsen","doi":"10.1787/9789264087156-13-EN","DOIUrl":null,"url":null,"abstract":"Emphasis on energy security issues has brought much-needed attention to economic production of hydrogen as the secondary energy carrier for non-electrical markets as well as to meet increasing demand for crude upgrading and desulphurisation. While steam reforming of methane is the current method of production of hydrogen, the fossil fuel feed consumes non-renewable fuel while emitting greenhouse gases. Thus, in the long run, efficient, environmentally-friendly and economic means of hydrogen production using nuclear and renewable energy needs to be developed. Steam electrolysis, particularly using high temperature ceramic membrane processes, provides an attractive option for efficient generation of high purity hydrogen.","PeriodicalId":88069,"journal":{"name":"Nuclear science abstracts","volume":"3 1","pages":"129-129"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear science abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1787/9789264087156-13-EN","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Emphasis on energy security issues has brought much-needed attention to economic production of hydrogen as the secondary energy carrier for non-electrical markets as well as to meet increasing demand for crude upgrading and desulphurisation. While steam reforming of methane is the current method of production of hydrogen, the fossil fuel feed consumes non-renewable fuel while emitting greenhouse gases. Thus, in the long run, efficient, environmentally-friendly and economic means of hydrogen production using nuclear and renewable energy needs to be developed. Steam electrolysis, particularly using high temperature ceramic membrane processes, provides an attractive option for efficient generation of high purity hydrogen.