Estimation of Affective Level in the Wild with Multiple Memory Networks

Jianshu Li, Yunpeng Chen, Shengtao Xiao, Jian Zhao, S. Roy, Jiashi Feng, Shuicheng Yan, T. Sim
{"title":"Estimation of Affective Level in the Wild with Multiple Memory Networks","authors":"Jianshu Li, Yunpeng Chen, Shengtao Xiao, Jian Zhao, S. Roy, Jiashi Feng, Shuicheng Yan, T. Sim","doi":"10.1109/CVPRW.2017.244","DOIUrl":null,"url":null,"abstract":"This paper presents the proposed solution to the \"affect in the wild\" challenge, which aims to estimate the affective level, i.e. the valence and arousal values, of every frame in a video. A carefully designed deep convolutional neural network (a variation of residual network) for affective level estimation of facial expressions is first implemented as a baseline. Next we use multiple memory networks to model the temporal relations between the frames. Finally ensemble models are used to combine the predictions from multiple memory networks. Our proposed solution outperforms the baseline model by a factor of 10.62% in terms of mean square error (MSE).","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"3 1","pages":"1947-1954"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper presents the proposed solution to the "affect in the wild" challenge, which aims to estimate the affective level, i.e. the valence and arousal values, of every frame in a video. A carefully designed deep convolutional neural network (a variation of residual network) for affective level estimation of facial expressions is first implemented as a baseline. Next we use multiple memory networks to model the temporal relations between the frames. Finally ensemble models are used to combine the predictions from multiple memory networks. Our proposed solution outperforms the baseline model by a factor of 10.62% in terms of mean square error (MSE).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多记忆网络的野外情感水平估计
本文提出了“野外情感”挑战的解决方案,该挑战旨在估计视频中每帧的情感水平,即价值和唤醒值。首先将精心设计的深度卷积神经网络(残差网络的一种变体)用于面部表情的情感水平估计作为基线。接下来,我们使用多个记忆网络来建模帧之间的时间关系。最后,采用集成模型对多个记忆网络的预测结果进行组合。我们提出的解决方案在均方误差(MSE)方面优于基线模型10.62%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measuring Energy Expenditure in Sports by Thermal Video Analysis Court-Based Volleyball Video Summarization Focusing on Rally Scene Generating 5D Light Fields in Scattering Media for Representing 3D Images Application of Computer Vision and Vector Space Model for Tactical Movement Classification in Badminton A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1