Nanocellulose in Heterogeneous Water-Based Polymerization for Wood Adhesives

Consuelo Fritz, J. Olivera
{"title":"Nanocellulose in Heterogeneous Water-Based Polymerization for Wood Adhesives","authors":"Consuelo Fritz, J. Olivera","doi":"10.3390/polysaccharides3010012","DOIUrl":null,"url":null,"abstract":"The interest in the development of biobased adhesives has increased due to environmental concerns. Moreover, as the production of engineered wood products (EWPs) is expected to grow, the wood adhesives market needs to transit toward formaldehyde-free products. Cellulose nanoparticles (CNPs) are a material with unique properties and advantages for producing hybrid materials as biobased wood adhesives. Besides their traditional use as reinforcing additives, CNPs can be incorporated at the beginning of the polymerization reaction to form in situ polymerized hybrid adhesives with better mechanical and physicochemical properties than the neat adhesive. Despite their outstanding characteristics, CNPs are still an emerging nanomaterial in the wood adhesive field, and the studies are incipient. This review explores the utilization of CNPs in heterogeneous polymerization for the production of polyvinyl acetate, polymeric isocyanates, waterborne polyurethane systems, and other waterborne polymer latexes. The main challenges are discussed, and some recommendations are set down for the manufacture of these novel hybrid nanocomposites.","PeriodicalId":18775,"journal":{"name":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","volume":"7 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/polysaccharides3010012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The interest in the development of biobased adhesives has increased due to environmental concerns. Moreover, as the production of engineered wood products (EWPs) is expected to grow, the wood adhesives market needs to transit toward formaldehyde-free products. Cellulose nanoparticles (CNPs) are a material with unique properties and advantages for producing hybrid materials as biobased wood adhesives. Besides their traditional use as reinforcing additives, CNPs can be incorporated at the beginning of the polymerization reaction to form in situ polymerized hybrid adhesives with better mechanical and physicochemical properties than the neat adhesive. Despite their outstanding characteristics, CNPs are still an emerging nanomaterial in the wood adhesive field, and the studies are incipient. This review explores the utilization of CNPs in heterogeneous polymerization for the production of polyvinyl acetate, polymeric isocyanates, waterborne polyurethane systems, and other waterborne polymer latexes. The main challenges are discussed, and some recommendations are set down for the manufacture of these novel hybrid nanocomposites.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米纤维素在木材胶粘剂非均相水基聚合中的应用
由于对环境的关注,人们对生物基胶粘剂的发展越来越感兴趣。此外,随着工程木制品(EWPs)的生产预计将增长,木材胶粘剂市场需要向无甲醛产品过渡。纤维素纳米颗粒(CNPs)是一种具有独特性能和优势的复合材料,可用于生产生物基木材胶粘剂。除了作为增强剂的传统用途外,CNPs还可以在聚合反应开始时加入,形成原位聚合杂化粘合剂,具有比纯粘合剂更好的机械和物理化学性能。尽管CNPs具有突出的特性,但在木材胶粘剂领域仍是一种新兴的纳米材料,研究还处于起步阶段。本文综述了CNPs在非均相聚合中用于生产聚醋酸乙烯酯、聚合异氰酸酯、水性聚氨酯体系和其他水性聚合物乳液的应用。本文讨论了目前所面临的主要挑战,并对这些新型杂化纳米复合材料的制备提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient (Bio)emulsification/Degradation of Crude Oil Using Cellulose Nanocrystals Advancing Paper Industry Applications with Extruded Cationic Wheat Starch as an Environmentally Friendly Biopolymer Algal Polysaccharides-Based Nanomaterials: General Aspects and Potential Applications in Food and Biomedical Fields Enzymatic Treatment of Ferulated Arabinoxylans from Distillers Dried Grains with Solubles: Influence on the Fabrication of Covalent Electro-Sprayed Nanoparticles In Vitro Biological Properties of Cyclodextrin-Based Polymers: Interaction with Human Serum Albumin, Red Blood Cells and Bacteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1