Energy Optimal Trajectories in Human Arm Motion Aiming for Assistive Robots

IF 0.7 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS Modeling Identification and Control Pub Date : 2017-01-01 DOI:10.4173/MIC.2017.1.2
Lelai Zhou, S. Bai, Yibin Li
{"title":"Energy Optimal Trajectories in Human Arm Motion Aiming for Assistive Robots","authors":"Lelai Zhou, S. Bai, Yibin Li","doi":"10.4173/MIC.2017.1.2","DOIUrl":null,"url":null,"abstract":"The energy expenditure in human arm has been of great interests for seeking optimal human arm trajectories. This paper presents a new way for calculating metabolic energy consumption of human arm motions. The purpose is to reveal the relationship between the energy consumption and the trajectory of arm motion, and further, the acceleration and arm orientation contributions. Human arm motion in horizontal plane is investigated by virtue of Qualisys motion capture system. The motion data is post-processed by a biomechanical model to obtain the metabolic expenditure. Results on the arm motion kinematics, dynamics and metabolic energy consumption, are included.","PeriodicalId":49801,"journal":{"name":"Modeling Identification and Control","volume":"1 1","pages":"11-19"},"PeriodicalIF":0.7000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modeling Identification and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4173/MIC.2017.1.2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 15

Abstract

The energy expenditure in human arm has been of great interests for seeking optimal human arm trajectories. This paper presents a new way for calculating metabolic energy consumption of human arm motions. The purpose is to reveal the relationship between the energy consumption and the trajectory of arm motion, and further, the acceleration and arm orientation contributions. Human arm motion in horizontal plane is investigated by virtue of Qualisys motion capture system. The motion data is post-processed by a biomechanical model to obtain the metabolic expenditure. Results on the arm motion kinematics, dynamics and metabolic energy consumption, are included.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
辅助机器人手臂运动瞄准能量优化轨迹研究
人体手臂的能量消耗是寻找最佳人体手臂运动轨迹的重要问题。提出了一种计算人体手臂运动代谢能量消耗的新方法。目的是揭示能量消耗与手臂运动轨迹之间的关系,进而揭示加速度和手臂方向的贡献。利用Qualisys运动捕捉系统对人体手臂在水平面上的运动进行了研究。运动数据通过生物力学模型进行后处理以获得代谢消耗。包括手臂运动运动学、动力学和代谢能量消耗的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Modeling Identification and Control
Modeling Identification and Control 工程技术-计算机:控制论
CiteScore
3.30
自引率
0.00%
发文量
6
审稿时长
>12 weeks
期刊介绍: The aim of MIC is to present Nordic research activities in the field of modeling, identification and control to the international scientific community. Historically, the articles published in MIC presented the results of research carried out in Norway, or sponsored primarily by a Norwegian institution. Since 2009 the journal also accepts papers from the other Nordic countries.
期刊最新文献
Programming Fine Manufacturing Tasks on Collaborative Robots: A Case Study on Industrial Gluing Microevolutionary system identification and climate response predictions by use of BLUP prediction error method Improving Energy Efficiency and Response Time of an Offshore Winch Drive with Digital Displacement Motors A Novel Control Design for Realizing Passive Load-Holding Function on a Two-Motor-Two-Pump Motor-Controlled Hydraulic Cylinder Construct, Merge, Solve and Adapt Applied to the Maximum Disjoint Dominating Sets Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1