MorphPool: Efficient Non-linear Pooling & Unpooling in CNNs

R. Groenendijk, L. Dorst, T. Gevers
{"title":"MorphPool: Efficient Non-linear Pooling & Unpooling in CNNs","authors":"R. Groenendijk, L. Dorst, T. Gevers","doi":"10.48550/arXiv.2211.14037","DOIUrl":null,"url":null,"abstract":"Pooling is essentially an operation from the field of Mathematical Morphology, with max pooling as a limited special case. The more general setting of MorphPooling greatly extends the tool set for building neural networks. In addition to pooling operations, encoder-decoder networks used for pixel-level predictions also require unpooling. It is common to combine unpooling with convolution or deconvolution for up-sampling. However, using its morphological properties, unpooling can be generalised and improved. Extensive experimentation on two tasks and three large-scale datasets shows that morphological pooling and unpooling lead to improved predictive performance at much reduced parameter counts.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"21 1","pages":"56"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.14037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Pooling is essentially an operation from the field of Mathematical Morphology, with max pooling as a limited special case. The more general setting of MorphPooling greatly extends the tool set for building neural networks. In addition to pooling operations, encoder-decoder networks used for pixel-level predictions also require unpooling. It is common to combine unpooling with convolution or deconvolution for up-sampling. However, using its morphological properties, unpooling can be generalised and improved. Extensive experimentation on two tasks and three large-scale datasets shows that morphological pooling and unpooling lead to improved predictive performance at much reduced parameter counts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MorphPool: cnn中高效的非线性池化和解池化
池化本质上是一种来自数学形态学领域的操作,最大池化是一种有限的特殊情况。MorphPooling更通用的设置极大地扩展了构建神经网络的工具集。除了池化操作,用于像素级预测的编码器-解码器网络也需要解池化。通常将解池与卷积或反卷积结合起来进行上采样。然而,利用其形态特性,解池可以推广和改进。在两个任务和三个大规模数据集上进行的大量实验表明,形态池化和解池化可以在大大减少参数计数的情况下提高预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning Anatomically Consistent Embedding for Chest Radiography. Single Pixel Spectral Color Constancy DiffSketching: Sketch Control Image Synthesis with Diffusion Models Defect Transfer GAN: Diverse Defect Synthesis for Data Augmentation Mitigating Bias in Visual Transformers via Targeted Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1