REAL TIME RECONSTRUCTION OF FLUID IN VIDEO

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS International Journal of Modeling Simulation and Scientific Computing Pub Date : 2013-09-12 DOI:10.1142/S1793962313420014
Hongyan Quan, M. Yu, Xiao Song, Yan Gao
{"title":"REAL TIME RECONSTRUCTION OF FLUID IN VIDEO","authors":"Hongyan Quan, M. Yu, Xiao Song, Yan Gao","doi":"10.1142/S1793962313420014","DOIUrl":null,"url":null,"abstract":"This paper puts forward a new method of realtime reconstruction of fluid in natural scene. It takes the measure of combination of image analysis and LBM (Lattice Boltzmann Methods). First, employs LK (Lucas–Kanade) method to calculate the dense optical flow, and then takes LBM to obtain the joint force of central particles for the initial result. After backfilling the velocity vectors field, it adopts the K-means cluster to obtain several classes, in each class, it takes advantage of the Rayleigh distribution to fit the height field of fluid. Finally, the reconstruction result of fluid is obtained. In addition, it demonstrates the results of the height field of fluid in the experiment. Further experiments shows that it is a valid method of fluid reconstruction with real time and can be used in the study of natural landscape fluid with efficiency and feasibility.","PeriodicalId":45889,"journal":{"name":"International Journal of Modeling Simulation and Scientific Computing","volume":"14 1","pages":"1342001"},"PeriodicalIF":0.9000,"publicationDate":"2013-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modeling Simulation and Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793962313420014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

Abstract

This paper puts forward a new method of realtime reconstruction of fluid in natural scene. It takes the measure of combination of image analysis and LBM (Lattice Boltzmann Methods). First, employs LK (Lucas–Kanade) method to calculate the dense optical flow, and then takes LBM to obtain the joint force of central particles for the initial result. After backfilling the velocity vectors field, it adopts the K-means cluster to obtain several classes, in each class, it takes advantage of the Rayleigh distribution to fit the height field of fluid. Finally, the reconstruction result of fluid is obtained. In addition, it demonstrates the results of the height field of fluid in the experiment. Further experiments shows that it is a valid method of fluid reconstruction with real time and can be used in the study of natural landscape fluid with efficiency and feasibility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视频中流体的实时重建
提出了一种实时重建自然场景中流体的新方法。该方法采用图像分析与晶格玻尔兹曼方法相结合的方法。首先采用LK (Lucas-Kanade)方法计算密集光流,然后采用LBM方法得到中心粒子的合力作为初始结果。对速度矢量场进行回填后,采用K-means聚类得到若干类,在每一类中利用瑞利分布拟合流体高度场。最后,得到流体的重构结果。并对实验中流体高度场的计算结果进行了验证。进一步的实验表明,该方法是一种有效的流体实时重构方法,可用于自然景观流体的研究,具有较高的效率和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
16.70%
发文量
0
期刊最新文献
Graph Laplacian Regularization with Sparse Coding in Secure Image Restoration and Representation for Internet of Things CFD Simulation and Optimization of Ventilation for the Layout of Community Architecture Inspired by Fishbone Form Digital twin for a robot assembly line: architecture and implementation Research on numerical simulation of wind load on high-rise buildings along the street based on BIM model Optimal analysis of optical parameters of road tunnel opening scrimshaw
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1