Visual Analytics of Missing Data in Epidemiological Cohort Studies

S. Alemzadeh, Uli Niemann, T. Ittermann, H. Völzke, D. Schneider, M. Spiliopoulou, B. Preim
{"title":"Visual Analytics of Missing Data in Epidemiological Cohort Studies","authors":"S. Alemzadeh, Uli Niemann, T. Ittermann, H. Völzke, D. Schneider, M. Spiliopoulou, B. Preim","doi":"10.2312/vcbm.20171236","DOIUrl":null,"url":null,"abstract":"We introduce a visual analytics solution to analyze and treat missing values. Our solution is based on general approaches to handle missing values, but is fine-tuned to the problems in epidemiological cohort study data. The most severe missingness problem in these data is the considerable dropout rate in longitudinal studies that limits the power of statistical analysis and the validity of study findings. Our work is inspired by discussions with epidemiologists and tries to add visual components to their current statistics-based approaches. In this paper we provide a graphical user interface for exploration, imputation and checking the quality of imputations.","PeriodicalId":88872,"journal":{"name":"Eurographics Workshop on Visual Computing for Biomedicine","volume":"13 1","pages":"43-51"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Workshop on Visual Computing for Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/vcbm.20171236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We introduce a visual analytics solution to analyze and treat missing values. Our solution is based on general approaches to handle missing values, but is fine-tuned to the problems in epidemiological cohort study data. The most severe missingness problem in these data is the considerable dropout rate in longitudinal studies that limits the power of statistical analysis and the validity of study findings. Our work is inspired by discussions with epidemiologists and tries to add visual components to their current statistics-based approaches. In this paper we provide a graphical user interface for exploration, imputation and checking the quality of imputations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流行病学队列研究中缺失数据的可视化分析
我们引入了一个可视化分析解决方案来分析和处理缺失值。我们的解决方案基于处理缺失值的一般方法,但针对流行病学队列研究数据中的问题进行了微调。这些数据中最严重的缺失问题是纵向研究中相当大的辍学率,这限制了统计分析的能力和研究结果的有效性。我们的工作受到与流行病学家讨论的启发,并试图在他们目前基于统计的方法中添加视觉组件。在本文中,我们提供了一个图形用户界面,用于搜索、插补和检查插补的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Analytics to Assess Deep Learning Models for Cross-Modal Brain Tumor Segmentation Distance Visualizations for Vascular Structures in Desktop and VR: Overview and Implementation Is there a Tornado in Alex's Blood Flow? A Case Study for Narrative Medical Visualization HistoContours: a Framework for Visual Annotation of Histopathology Whole Slide Images Predicting, Analyzing and Communicating Outcomes of COVID-19 Hospitalizations with Medical Images and Clinical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1