SuRF: Practical Range Query Filtering with Fast Succinct Tries

Huanchen Zhang, Hyeontaek Lim, Viktor Leis, D. Andersen, M. Kaminsky, Kimberly Keeton, Andrew Pavlo
{"title":"SuRF: Practical Range Query Filtering with Fast Succinct Tries","authors":"Huanchen Zhang, Hyeontaek Lim, Viktor Leis, D. Andersen, M. Kaminsky, Kimberly Keeton, Andrew Pavlo","doi":"10.1145/3183713.3196931","DOIUrl":null,"url":null,"abstract":"We present the Succinct Range Filter (SuRF), a fast and compact data structure for approximate membership tests. Unlike traditional Bloom filters, SuRF supports both single-key lookups and common range queries: open-range queries, closed-range queries, and range counts. SuRF is based on a new data structure called the Fast Succinct Trie (FST) that matches the point and range query performance of state-of-the-art order-preserving indexes, while consuming only 10 bits per trie node. The false positive rates in SuRF for both point and range queries are tunable to satisfy different application needs. We evaluate SuRF in RocksDB as a replacement for its Bloom filters to reduce I/O by filtering requests before they access on-disk data structures. Our experiments on a 100 GB dataset show that replacing RocksDB's Bloom filters with SuRFs speeds up open-seek (without upper-bound) and closed-seek (with upper-bound) queries by up to 1.5× and 5× with a modest cost on the worst-case (all-missing) point query throughput due to slightly higher false positive rate.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3196931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 117

Abstract

We present the Succinct Range Filter (SuRF), a fast and compact data structure for approximate membership tests. Unlike traditional Bloom filters, SuRF supports both single-key lookups and common range queries: open-range queries, closed-range queries, and range counts. SuRF is based on a new data structure called the Fast Succinct Trie (FST) that matches the point and range query performance of state-of-the-art order-preserving indexes, while consuming only 10 bits per trie node. The false positive rates in SuRF for both point and range queries are tunable to satisfy different application needs. We evaluate SuRF in RocksDB as a replacement for its Bloom filters to reduce I/O by filtering requests before they access on-disk data structures. Our experiments on a 100 GB dataset show that replacing RocksDB's Bloom filters with SuRFs speeds up open-seek (without upper-bound) and closed-seek (with upper-bound) queries by up to 1.5× and 5× with a modest cost on the worst-case (all-missing) point query throughput due to slightly higher false positive rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SuRF:实用范围查询过滤与快速简洁的尝试
摘要提出了一种快速、紧凑的近似隶属度检验数据结构——简洁范围滤波器(SuRF)。与传统的Bloom过滤器不同,SuRF支持单键查找和常见的范围查询:开放范围查询,封闭范围查询和范围计数。SuRF基于一种新的数据结构,称为快速简洁Trie (FST),它匹配最先进的顺序保持索引的点和范围查询性能,同时每个Trie节点仅消耗10比特。SuRF中点查询和范围查询的误报率是可调的,以满足不同的应用程序需求。我们评估了RocksDB中的SuRF作为Bloom过滤器的替代品,通过在请求访问磁盘数据结构之前过滤请求来减少I/O。我们在100 GB数据集上的实验表明,用surf替换RocksDB的Bloom过滤器,可以将开放寻道(没有上界)和封闭寻道(有上界)查询的速度提高1.5倍和5倍,并且由于误报率略高,在最坏情况(全部缺失)点查询吞吐量上的代价不大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meta-Dataflows: Efficient Exploratory Dataflow Jobs Columnstore and B+ tree - Are Hybrid Physical Designs Important? Demonstration of VerdictDB, the Platform-Independent AQP System Efficient Selection of Geospatial Data on Maps for Interactive and Visualized Exploration Session details: Keynote1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1