{"title":"Image Restoration Using Lucy Richardson Algorithm for Deblurring Images with Improved PSNR, SSIM, NC in Comparison with Wiener Filter","authors":"G. Reddy, R. Nanmaran, G. Paramasivam","doi":"10.47750/CIBG.2021.27.04.018","DOIUrl":null,"url":null,"abstract":"Aim: Image is the most powerful tool to analyze the information. Sometimes the captured image gets affected with blur and noise in the environment, which degrades the quality of the image. Image restoration is a technique in image processing where the degraded image can be restored or recovered to its nearest original image. Materials and Methods: In this research Lucy-Richardson algorithm is used for restoring blurred and noisy images using MATLAB software. And the proposed work is compared with Wiener filter, and the sample size for each group is 30. Results: The performance was compared based on three parameters, Power Signal to Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), Normalized Correlation (NC). High values of PSNR, SSIM and NC indicate the better performance of restoration algorithms. Lucy-Richardson provides a mean PSNR of 10.4086db, mean SSIM of 0.4173%, and NC of 0.7433% and Wiener filter provides a mean PSNR of 6.3979db, SSIM of 0.3016%, NC of 0.3276%. Conclusion: Based on the experimental results and statistical analysis using independent sample T test, image restoration using Lucy-Richardson algorithm significantly performs better than Wiener filter on restoring the degraded image with PSNR (P<0.001) and SSIM (P<0.001).","PeriodicalId":42396,"journal":{"name":"Alinteri Journal of Agriculture Sciences","volume":"285 1-2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alinteri Journal of Agriculture Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47750/CIBG.2021.27.04.018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Aim: Image is the most powerful tool to analyze the information. Sometimes the captured image gets affected with blur and noise in the environment, which degrades the quality of the image. Image restoration is a technique in image processing where the degraded image can be restored or recovered to its nearest original image. Materials and Methods: In this research Lucy-Richardson algorithm is used for restoring blurred and noisy images using MATLAB software. And the proposed work is compared with Wiener filter, and the sample size for each group is 30. Results: The performance was compared based on three parameters, Power Signal to Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), Normalized Correlation (NC). High values of PSNR, SSIM and NC indicate the better performance of restoration algorithms. Lucy-Richardson provides a mean PSNR of 10.4086db, mean SSIM of 0.4173%, and NC of 0.7433% and Wiener filter provides a mean PSNR of 6.3979db, SSIM of 0.3016%, NC of 0.3276%. Conclusion: Based on the experimental results and statistical analysis using independent sample T test, image restoration using Lucy-Richardson algorithm significantly performs better than Wiener filter on restoring the degraded image with PSNR (P<0.001) and SSIM (P<0.001).