G. Garcia, Filipe A. S. Rocha, M. Torre, W. Serrantola, F. Lizarralde, Andre Franca, G. Pessin, G. Freitas
{"title":"ROSI: A Novel Robotic Method for Belt Conveyor Structures Inspection","authors":"G. Garcia, Filipe A. S. Rocha, M. Torre, W. Serrantola, F. Lizarralde, Andre Franca, G. Pessin, G. Freitas","doi":"10.1109/ICAR46387.2019.8981561","DOIUrl":null,"url":null,"abstract":"Belt conveyors play an essential role in the transportation of dry bulk material in different industries. Inspecting conveyor belts structures and its components, such as idlers rolls, is a fundamental task to guarantee the proper production flow. Traditionally, these are cognitive inspections based on sound and vision. In this paper we describe a novel procedure to inspect belt conveyor structures with a robotic device. The system is composed by (i) a mobile platform capable of moving in different terrains, overcoming obstacles and traversing stairs with different slopes, (ii) a robotic manipulator with six degrees of freedom, and (iii) a set of sensors including microphone, accelerometers, laser, and cameras. Preliminary field tests validated the proposed system for mining operations allowing the identification of enhancements regarding platform mobility and control strategy. Based on the kinematic model, we present a control method to command both the mobile platform and robotic manipulator considering the robotic device as a whole-body system. The strategy is validated through simulations using ROS and V-REP.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"3 1","pages":"326-331"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Belt conveyors play an essential role in the transportation of dry bulk material in different industries. Inspecting conveyor belts structures and its components, such as idlers rolls, is a fundamental task to guarantee the proper production flow. Traditionally, these are cognitive inspections based on sound and vision. In this paper we describe a novel procedure to inspect belt conveyor structures with a robotic device. The system is composed by (i) a mobile platform capable of moving in different terrains, overcoming obstacles and traversing stairs with different slopes, (ii) a robotic manipulator with six degrees of freedom, and (iii) a set of sensors including microphone, accelerometers, laser, and cameras. Preliminary field tests validated the proposed system for mining operations allowing the identification of enhancements regarding platform mobility and control strategy. Based on the kinematic model, we present a control method to command both the mobile platform and robotic manipulator considering the robotic device as a whole-body system. The strategy is validated through simulations using ROS and V-REP.