Mohamad Abed El Rahman Hammoud, Humam Alwassel, Bernard Ghanem, O. Knio, I. Hoteit
{"title":"Physics-Informed Deep Neural Network for Backward-in-Time Prediction: Application to Rayleigh–Bénard Convection","authors":"Mohamad Abed El Rahman Hammoud, Humam Alwassel, Bernard Ghanem, O. Knio, I. Hoteit","doi":"10.1175/aies-d-22-0076.1","DOIUrl":null,"url":null,"abstract":"\nBackward-in-time predictions are needed to better understand the underlying dynamics of physical fluid flows and improve future forecasts. However, integrating fluid flows backward in time is challenging because of numerical instabilities caused by the diffusive nature of the fluid systems and nonlinearities of the governing equations. Although this problem has been long addressed using a non-positive diffusion coefficient when integrating backward, it is notoriously inaccurate. In this study, a physics-informed deep neural network (PI-DNN) is presented to predict past states of a dissipative dynamical system from snapshots of the subsequent evolution of the system state. The performance of the PI-DNN is investigated using several systematic numerical experiments and the accuracy of the backward-in-time predictions is evaluated in terms of different error metrics. The proposed PI-DNN can predict the previous state of the Rayleigh–Bénard convection with an 8-time step average normalized ℓ2-error of less than 2% for a turbulent flow at a Rayleigh number of 105.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-22-0076.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Backward-in-time predictions are needed to better understand the underlying dynamics of physical fluid flows and improve future forecasts. However, integrating fluid flows backward in time is challenging because of numerical instabilities caused by the diffusive nature of the fluid systems and nonlinearities of the governing equations. Although this problem has been long addressed using a non-positive diffusion coefficient when integrating backward, it is notoriously inaccurate. In this study, a physics-informed deep neural network (PI-DNN) is presented to predict past states of a dissipative dynamical system from snapshots of the subsequent evolution of the system state. The performance of the PI-DNN is investigated using several systematic numerical experiments and the accuracy of the backward-in-time predictions is evaluated in terms of different error metrics. The proposed PI-DNN can predict the previous state of the Rayleigh–Bénard convection with an 8-time step average normalized ℓ2-error of less than 2% for a turbulent flow at a Rayleigh number of 105.