Study on the Quantitative Assessment of Impact Damage of Yellow Peaches Using the Combined Hyperspectral Technology and Mechanical Parameters

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-10-14 DOI:10.1155/2022/7526826
Feng Zhang, Bin Li, Hai-Long Yin, Jiping Zou, Aiguo Ouyang
{"title":"Study on the Quantitative Assessment of Impact Damage of Yellow Peaches Using the Combined Hyperspectral Technology and Mechanical Parameters","authors":"Feng Zhang, Bin Li, Hai-Long Yin, Jiping Zou, Aiguo Ouyang","doi":"10.1155/2022/7526826","DOIUrl":null,"url":null,"abstract":"The quantitative description of the impact damage of yellow peaches is an essential basis for evaluating their quality and guiding their postharvest handling. In this study, the combined hyperspectral technology and mechanical parameters method were used to quantitatively investigate the impact damage of yellow peaches. Firstly, the mechanical parameters, which are damaged area, absorbed energy, maximum contact force, and maximum stress of yellow peaches, were obtained by the impact device. The statistical regression models between mechanical parameters and damage area were established, and the results showed that the absorbed energy and maximum contact force are the optimal parameters to characterize the impact damage of yellow peaches. Then, the raw spectra were preprocessed by three spectral pretreatment methods, which are standard normal variate (SNV), multiplicative scatter correction (MSC), and SG smoothing, respectively, and the feature wavelengths were selected by the competitive adaptive reweighted sampling (CARS), and the quantitative relationships between spectra and mechanical parameters were successfully modeled based on partial least squares regression (PLSR). The results showed that there is a strong linear correlation between the spectral data and the mechanical parameters, and the prediction performance of the SNV-CARS-PLSR model is best, and the RP and RMSEP of the damaged area, absorbed energy, maximum contact force, and maximum stress of it were 0.920 and 86.452 mm2, 0.845 and 1.303 J, 0.943 and 49.666 N, 0.660 and 0.146 MPa, respectively. In a word, this study shows that the combined hyperspectral technology and mechanical parameters method can be used to quantitatively assess the impact damage of yellow peaches, and guide the postharvest handling of fruits.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/7526826","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

The quantitative description of the impact damage of yellow peaches is an essential basis for evaluating their quality and guiding their postharvest handling. In this study, the combined hyperspectral technology and mechanical parameters method were used to quantitatively investigate the impact damage of yellow peaches. Firstly, the mechanical parameters, which are damaged area, absorbed energy, maximum contact force, and maximum stress of yellow peaches, were obtained by the impact device. The statistical regression models between mechanical parameters and damage area were established, and the results showed that the absorbed energy and maximum contact force are the optimal parameters to characterize the impact damage of yellow peaches. Then, the raw spectra were preprocessed by three spectral pretreatment methods, which are standard normal variate (SNV), multiplicative scatter correction (MSC), and SG smoothing, respectively, and the feature wavelengths were selected by the competitive adaptive reweighted sampling (CARS), and the quantitative relationships between spectra and mechanical parameters were successfully modeled based on partial least squares regression (PLSR). The results showed that there is a strong linear correlation between the spectral data and the mechanical parameters, and the prediction performance of the SNV-CARS-PLSR model is best, and the RP and RMSEP of the damaged area, absorbed energy, maximum contact force, and maximum stress of it were 0.920 and 86.452 mm2, 0.845 and 1.303 J, 0.943 and 49.666 N, 0.660 and 0.146 MPa, respectively. In a word, this study shows that the combined hyperspectral technology and mechanical parameters method can be used to quantitatively assess the impact damage of yellow peaches, and guide the postharvest handling of fruits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用高光谱技术和力学参数联合定量评价黄桃冲击损伤的研究
对黄桃冲击危害进行定量描述,是评价黄桃品质和指导采后处理的重要依据。本研究采用高光谱技术与力学参数法相结合的方法,对黄桃的冲击损伤进行了定量研究。首先,利用冲击装置获得了黄桃的损伤面积、吸收能量、最大接触力和最大应力等力学参数;建立了力学参数与损伤面积之间的统计回归模型,结果表明,吸收能和最大接触力是表征黄桃冲击损伤的最优参数。然后,分别采用标准正态变量(SNV)、乘法散点校正(MSC)和SG平滑三种光谱预处理方法对原始光谱进行预处理,采用竞争自适应重加权采样(CARS)选择特征波长,并基于偏最小二乘回归(PLSR)成功建立光谱与力学参数之间的定量关系。结果表明,光谱数据与力学参数具有较强的线性相关性,其中SNV-CARS-PLSR模型的预测性能最好,其损伤面积、吸收能量、最大接触力和最大应力的RP和RMSEP分别为0.920和86.452 mm2、0.845和1.303 J、0.943和49.666 N、0.660和0.146 MPa。综上所述,本研究表明,结合高光谱技术和力学参数法可以定量评价黄桃的冲击损伤,指导果实采后处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1