Transient Heat Flow in a One-component Lennard-Jones/spline Fluid. A Non-equilibrium Molecular Dynamics Study

B. Hafskjold
{"title":"Transient Heat Flow in a One-component Lennard-Jones/spline Fluid. A Non-equilibrium Molecular Dynamics Study","authors":"B. Hafskjold","doi":"10.12921/CMST.2017.00000012","DOIUrl":null,"url":null,"abstract":"A one-component Lennard-Jones/spline fluid at equilibrium was perturbed by a sudden change of the temperature at one of the system’s boundaries. The system’s response was determined by non-equilibrium molecular dynamics (NEMD). The results show that heat was transported by two mechanisms: (1) Heat diffusion and conduction, and (2) energy dissipation associated with the propagation of a pressure (shock) wave. These two processes occur at different time scales, which makes it possible to separate them in one single NEMD run. The system was studied in gas, liquid, and supercritical states with various forms and strengths of the thermal perturbation. Near the heat source, heat was transported according to the transient heat equation. In addition, there was a much faster heat transport, correlated with a pressure wave. This second mechanism was similar to the thermo-mechanical “piston effect” in near-critical fluids and could not be explained by the Joule-Thomson effect. For strong perturbations, the pressure wave travelled faster than the speed of sound, turning it into a shock wave. The system’s local measurable heat flux was found to be consistent with Fourier’s law near the heat source, but not in the wake of the shock. The NEMD results were, however, consistent with the Cattaneo-Vernotte model. The system was found to be in local equilibrium in the transient phase, even with very strong perturbations, except for a low-density gas. For dense systems, we did not find that the local equilibrium assumption used in classical irreversible thermodynamics is inconsistent with the Cattaneo-Vernotte model.","PeriodicalId":10561,"journal":{"name":"computational methods in science and technology","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"computational methods in science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12921/CMST.2017.00000012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A one-component Lennard-Jones/spline fluid at equilibrium was perturbed by a sudden change of the temperature at one of the system’s boundaries. The system’s response was determined by non-equilibrium molecular dynamics (NEMD). The results show that heat was transported by two mechanisms: (1) Heat diffusion and conduction, and (2) energy dissipation associated with the propagation of a pressure (shock) wave. These two processes occur at different time scales, which makes it possible to separate them in one single NEMD run. The system was studied in gas, liquid, and supercritical states with various forms and strengths of the thermal perturbation. Near the heat source, heat was transported according to the transient heat equation. In addition, there was a much faster heat transport, correlated with a pressure wave. This second mechanism was similar to the thermo-mechanical “piston effect” in near-critical fluids and could not be explained by the Joule-Thomson effect. For strong perturbations, the pressure wave travelled faster than the speed of sound, turning it into a shock wave. The system’s local measurable heat flux was found to be consistent with Fourier’s law near the heat source, but not in the wake of the shock. The NEMD results were, however, consistent with the Cattaneo-Vernotte model. The system was found to be in local equilibrium in the transient phase, even with very strong perturbations, except for a low-density gas. For dense systems, we did not find that the local equilibrium assumption used in classical irreversible thermodynamics is inconsistent with the Cattaneo-Vernotte model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单组分Lennard-Jones/样条流体的瞬态热流。非平衡分子动力学研究
处于平衡状态的单组分伦纳德-琼斯/样条流体被系统边界温度的突然变化所扰动。系统的响应由非平衡分子动力学(NEMD)决定。结果表明:热的传递主要通过两种机制进行:(1)热扩散和传导机制;(2)与压力(激波)传播相关的能量耗散机制。这两个过程发生在不同的时间尺度上,这使得在一个单一的NEMD运行中分离它们成为可能。研究了该体系在不同形式和强度的热扰动下的气态、液相和超临界态。在热源附近,根据瞬态热方程进行热传递。此外,有一个更快的热传输,与压力波相关。第二种机制类似于近临界流体中的热机械“活塞效应”,不能用焦耳-汤姆逊效应来解释。对于强扰动,压力波的传播速度比声速还快,从而转化为冲击波。系统的局部可测热通量在热源附近符合傅里叶定律,但在激波后不符合傅里叶定律。然而,NEMD的结果与Cattaneo-Vernotte模型一致。除了低密度气体外,该系统在瞬态阶段即使受到很强的扰动也处于局部平衡状态。对于致密系统,我们没有发现经典不可逆热力学中使用的局部平衡假设与Cattaneo-Vernotte模型不一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contactless Patient Authentication for Registration Using Face Recognition Technology A Scalable Cloud-Based Medical Adherence System with Data Analytic for Enabling Home Hospitalization Fake News Detection Issues and Challenges for Teaching Successful Programming Courses at National Secondary Schools of Malaysia Computational Science and Technology: 7th ICCST 2020, Pattaya, Thailand, 29–30 August, 2020
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1