Modeling of a greenhouse prototype using PSO algorithm based on a LabViewTM application

A. Pérez-González, O. Begovich, J. Ruiz-León
{"title":"Modeling of a greenhouse prototype using PSO algorithm based on a LabViewTM application","authors":"A. Pérez-González, O. Begovich, J. Ruiz-León","doi":"10.1109/ICEEE.2014.6978281","DOIUrl":null,"url":null,"abstract":"This paper presents a simple method based on Particle Swarm Optimization (PSO) to identify several parameters in a proposed mathematical model of a greenhouse prototype. These parameters are sought in order to approximate the real characteristics of a greenhouse physic prototype building in CINVESTAV Unidad Guadalajara, by using the PSO to minimize a proposed error function, based on the estimation of the two more representative dynamics of the climate conditions inside the greenhouse: the air temperature and relative humidity. The implementation is carried out in an offline optimization schedule using real data recorded through the LabViewTM SignalExpress application, and a real-time implementation in a LabViewTM code to optimize the model in a sample-to-sample execution of the PSO. Validation shows a good agreement in a direct comparison with the real dynamic behavior of temperature and relative humidity measures inside the greenhouse prototype, as shown by the reached level of adaptation of the model through the several PSO tests under the best calibration conditions.","PeriodicalId":6661,"journal":{"name":"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"32 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2014.6978281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents a simple method based on Particle Swarm Optimization (PSO) to identify several parameters in a proposed mathematical model of a greenhouse prototype. These parameters are sought in order to approximate the real characteristics of a greenhouse physic prototype building in CINVESTAV Unidad Guadalajara, by using the PSO to minimize a proposed error function, based on the estimation of the two more representative dynamics of the climate conditions inside the greenhouse: the air temperature and relative humidity. The implementation is carried out in an offline optimization schedule using real data recorded through the LabViewTM SignalExpress application, and a real-time implementation in a LabViewTM code to optimize the model in a sample-to-sample execution of the PSO. Validation shows a good agreement in a direct comparison with the real dynamic behavior of temperature and relative humidity measures inside the greenhouse prototype, as shown by the reached level of adaptation of the model through the several PSO tests under the best calibration conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LabViewTM应用的粒子群算法对温室原型进行建模
本文提出了一种基于粒子群优化(PSO)的简单方法来识别温室原型数学模型中的多个参数。这些参数是为了接近CINVESTAV Unidad Guadalajara温室物理原型建筑的真实特征,通过使用PSO最小化所提出的误差函数,基于温室内气候条件的两个更具代表性的动态估计:空气温度和相对湿度。通过LabViewTM SignalExpress应用程序记录的真实数据,在离线优化计划中进行实现,并在LabViewTM代码中实时实现,以在PSO的样本对样本执行中优化模型。在最佳校准条件下,通过多次PSO试验,模型达到了较好的自适应水平,验证结果与温室原型内温度和相对湿度测量的真实动态行为相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a vision algorithm for close-range relative navigation of underwater vehicles Fabrication of Pure Tin Oxide Pellets at Different Annealed Temperatures for CO and C3H8 Gas Sensors Study of sensing properties of ZnTe synthesized by mechanosynthesis for detecting gas CO ECG Arrhythmia Classification for Comparing Pre-Trained Deep Learning Models Reduction Of Energy Consumption in NoC Through The Application Of Novel Encoding Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1