Development of phased array ground penetrating radar for near surface exploration

K. Kikuchi, H. Mikada, J. Takekawa
{"title":"Development of phased array ground penetrating radar for near surface exploration","authors":"K. Kikuchi, H. Mikada, J. Takekawa","doi":"10.3997/2352-8265.20140219","DOIUrl":null,"url":null,"abstract":"We have confirmed the interaction among phased array antennas in our previous study. In this paper, we would like to discuss one of the powerful and practical schemes of using phased array antennas applied to near surface exploration using ground penetrating radar (GPR). GPR emits electromagnetic (EM) waves to the subsurface and to measure signals reflected back from buried anomalies for the estimation of the positions and shapes of the anomalies. Although phased array antennas could generate EM waves whose signal-to-noise ratio is superior to that emitted by the conventional GPR antenna, there has been a risk of the interaction among plural antennas could lower the signal-to-noise ratio due to electrical currents induced by magnetic field generated by the other antennas and it was necessary to confirm the level of the interaction or the unfavorable currents caused by the other antennas. We conduct a numerical simulation to evaluate the mutual coupling of each pair of phased array antennas to determine the best alignment of antennas in the design to maximize the level of emitted signals. We then conduct another simulation with heterogeneous ground model using our designed antenna in order to confirm the effectiveness of the phased array antenna in practice. Our results show that the phased array antenna enhances the signal-to-noise ratio compared to the conventional antenna and has a higher sensitivity to the targets located lateral to the survey lines with low interaction level between the neighboring two antennas. We conclude that the phased array antenna has a potential to be used as a new radar source for GPR.","PeriodicalId":14836,"journal":{"name":"Japan Geoscience Union","volume":"178 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japan Geoscience Union","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2352-8265.20140219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We have confirmed the interaction among phased array antennas in our previous study. In this paper, we would like to discuss one of the powerful and practical schemes of using phased array antennas applied to near surface exploration using ground penetrating radar (GPR). GPR emits electromagnetic (EM) waves to the subsurface and to measure signals reflected back from buried anomalies for the estimation of the positions and shapes of the anomalies. Although phased array antennas could generate EM waves whose signal-to-noise ratio is superior to that emitted by the conventional GPR antenna, there has been a risk of the interaction among plural antennas could lower the signal-to-noise ratio due to electrical currents induced by magnetic field generated by the other antennas and it was necessary to confirm the level of the interaction or the unfavorable currents caused by the other antennas. We conduct a numerical simulation to evaluate the mutual coupling of each pair of phased array antennas to determine the best alignment of antennas in the design to maximize the level of emitted signals. We then conduct another simulation with heterogeneous ground model using our designed antenna in order to confirm the effectiveness of the phased array antenna in practice. Our results show that the phased array antenna enhances the signal-to-noise ratio compared to the conventional antenna and has a higher sensitivity to the targets located lateral to the survey lines with low interaction level between the neighboring two antennas. We conclude that the phased array antenna has a potential to be used as a new radar source for GPR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近地表探测相控阵探地雷达的研制
我们在之前的研究中已经证实了相控阵天线之间的相互作用。本文讨论了一种强大而实用的利用相控阵天线进行探地雷达近地表探测的方案。探地雷达向地下发射电磁波,测量埋藏异常反射回来的信号,以估计异常的位置和形状。虽然相控阵天线可以产生比传统探地雷达天线发出的信噪比更好的电磁波,但存在多个天线之间相互作用的风险,可能会由于其他天线产生的磁场感应电流而降低信噪比,需要确认相互作用的程度或其他天线产生的不利电流。我们通过数值模拟来评估每对相控阵天线的相互耦合,以确定设计中天线的最佳对准方式,从而最大化发射信号的水平。然后,我们使用我们设计的天线进行了另一次非均匀地模型仿真,以验证相控阵天线在实践中的有效性。研究结果表明,相控阵天线与传统天线相比,提高了信噪比,对位于测量线横向的目标具有更高的灵敏度,且相邻两天线之间的相互作用水平较低。结果表明,相控阵天线具有作为探地雷达新雷达源的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tectonic Landform and Paleoseismic Activity of the Northernmost Sumatran Fault, Aceh Province, Indonesia Pressure-to-depth conversion models for metamorphic rocks: derivation and applications Standardized Variability Index (SVI): A multiscale index to assess the variability of precipitation Overpressured underthrust sediment in the Nankai Trough forearc inferred from high-frequency receiver function inversion Simple Topographic Parameter for Along-trench Friction Distribution of Shallow Megathrust Fault
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1