Scan-Specific Residual Convolutional Neural Networks for Fast MRI Using Residual RAKI

Chi Zhang, S. A. Hosseini, S. Moeller, Sebastian Weingärtner, K. Uğurbil, M. Akçakaya
{"title":"Scan-Specific Residual Convolutional Neural Networks for Fast MRI Using Residual RAKI","authors":"Chi Zhang, S. A. Hosseini, S. Moeller, Sebastian Weingärtner, K. Uğurbil, M. Akçakaya","doi":"10.1109/IEEECONF44664.2019.9048706","DOIUrl":null,"url":null,"abstract":"Parallel imaging is a widely-used acceleration technique for magnetic resonance imaging (MRI). Conventional linear reconstruction approaches in parallel imaging suffer from noise amplification. Recently, a non-linear method that utilizes subject- specific convolutional neural networks for k-space reconstruction, Robust Artificial-neural-networks for k-space Interpolation (RAKI) was proposed and shown to improve noise resilience over linear methods. However, the linear convolutions still provide a sufficient baseline image quality and interpretability. In this paper, we sought to utilize a residual network architecture to combine the benefits of both the linear and non-linear RAKI reconstructions. This hybrid method, called residual RAKI (rRAKI) offers significant improvement in image quality compared to linear method, and improves upon RAKI in highly- accelerated simultaneous multi-slice imaging. Furthermore, it establishes an interpretable view for the use of CNNs in parallel imaging, as the CNN component in the residual network removes the noise amplification arising from the linear part.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"9 1","pages":"1476-1480"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Parallel imaging is a widely-used acceleration technique for magnetic resonance imaging (MRI). Conventional linear reconstruction approaches in parallel imaging suffer from noise amplification. Recently, a non-linear method that utilizes subject- specific convolutional neural networks for k-space reconstruction, Robust Artificial-neural-networks for k-space Interpolation (RAKI) was proposed and shown to improve noise resilience over linear methods. However, the linear convolutions still provide a sufficient baseline image quality and interpretability. In this paper, we sought to utilize a residual network architecture to combine the benefits of both the linear and non-linear RAKI reconstructions. This hybrid method, called residual RAKI (rRAKI) offers significant improvement in image quality compared to linear method, and improves upon RAKI in highly- accelerated simultaneous multi-slice imaging. Furthermore, it establishes an interpretable view for the use of CNNs in parallel imaging, as the CNN component in the residual network removes the noise amplification arising from the linear part.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于残差RAKI的快速MRI扫描特异性残差卷积神经网络
平行成像是一种应用广泛的磁共振成像加速技术。传统的并行成像线性重建方法存在噪声放大的问题。最近,一种利用特定对象卷积神经网络进行k空间重建的非线性方法——鲁棒人工神经网络用于k空间插值(RAKI)被提出,并被证明比线性方法能提高噪声恢复能力。然而,线性卷积仍然提供了足够的基线图像质量和可解释性。在本文中,我们试图利用残差网络架构来结合线性和非线性RAKI重建的优点。这种混合方法被称为残差RAKI (rRAKI),与线性方法相比,它在图像质量上有了显著的改善,并在高加速同步多层成像中改进了RAKI。此外,由于残差网络中的CNN分量消除了线性部分产生的噪声放大,因此为CNN在并行成像中的使用建立了一个可解释的视图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised learning by a "softened" correlation game: duality and convergence Radar Beampattern Design for a Drone Swarm A Statistical Approach to Dynamic Synchrony Analysis of Neuronal Ensemble Spiking [Copyright notice] Phase Transition Analysis for Covariance Based Massive Random Access with Massive MIMO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1