{"title":"Cloudiness Parameterization for Use in Atmospheric Models: A Review and New Perspectives","authors":"R. Park, Song‐You Hong","doi":"10.3390/meteorology2030018","DOIUrl":null,"url":null,"abstract":"In atmospheric models, the representation of cloudiness is a direct linkage between the moisture amount and associated radiative forcing. This paper begins by providing a review of the parameterization of cloudiness that has been used for numerical weather predictions and climate studies. The inherent uncertainties in representing a partial fraction of clouds for radiation feedback and in evaluating it against the corresponding observations are focused. It is also stated that the major hydrometeor categories of water substances such as cloud ice and water that are responsible for cloud cover are readily available in modern weather and climate models. Inconsistencies in cloud cover and hydrometeors, even in the case of the prognostic method, are discussed. The compensating effect of cloudiness for radiative feedback is found to imply that the condensed water amount itself is more influential on the radiative forcing, rather than the accuracy of the cloudiness. Based on the above perspectives, an alternative diagnostic parameterization method is proposed, utilizing a monotonic relation between the cloud water amounts and cloudiness that are obtained from aircraft and satellite observations. The basic premise of this approach lies in the accuracy of the water substance in the models, indicating that future efforts need to be given to improvements in physical processes concerning hydrometeor properties for the accurate representation of cloud radiative feedback.","PeriodicalId":100061,"journal":{"name":"Agricultural Meteorology","volume":"572 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/meteorology2030018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In atmospheric models, the representation of cloudiness is a direct linkage between the moisture amount and associated radiative forcing. This paper begins by providing a review of the parameterization of cloudiness that has been used for numerical weather predictions and climate studies. The inherent uncertainties in representing a partial fraction of clouds for radiation feedback and in evaluating it against the corresponding observations are focused. It is also stated that the major hydrometeor categories of water substances such as cloud ice and water that are responsible for cloud cover are readily available in modern weather and climate models. Inconsistencies in cloud cover and hydrometeors, even in the case of the prognostic method, are discussed. The compensating effect of cloudiness for radiative feedback is found to imply that the condensed water amount itself is more influential on the radiative forcing, rather than the accuracy of the cloudiness. Based on the above perspectives, an alternative diagnostic parameterization method is proposed, utilizing a monotonic relation between the cloud water amounts and cloudiness that are obtained from aircraft and satellite observations. The basic premise of this approach lies in the accuracy of the water substance in the models, indicating that future efforts need to be given to improvements in physical processes concerning hydrometeor properties for the accurate representation of cloud radiative feedback.