Cloudiness Parameterization for Use in Atmospheric Models: A Review and New Perspectives

R. Park, Song‐You Hong
{"title":"Cloudiness Parameterization for Use in Atmospheric Models: A Review and New Perspectives","authors":"R. Park, Song‐You Hong","doi":"10.3390/meteorology2030018","DOIUrl":null,"url":null,"abstract":"In atmospheric models, the representation of cloudiness is a direct linkage between the moisture amount and associated radiative forcing. This paper begins by providing a review of the parameterization of cloudiness that has been used for numerical weather predictions and climate studies. The inherent uncertainties in representing a partial fraction of clouds for radiation feedback and in evaluating it against the corresponding observations are focused. It is also stated that the major hydrometeor categories of water substances such as cloud ice and water that are responsible for cloud cover are readily available in modern weather and climate models. Inconsistencies in cloud cover and hydrometeors, even in the case of the prognostic method, are discussed. The compensating effect of cloudiness for radiative feedback is found to imply that the condensed water amount itself is more influential on the radiative forcing, rather than the accuracy of the cloudiness. Based on the above perspectives, an alternative diagnostic parameterization method is proposed, utilizing a monotonic relation between the cloud water amounts and cloudiness that are obtained from aircraft and satellite observations. The basic premise of this approach lies in the accuracy of the water substance in the models, indicating that future efforts need to be given to improvements in physical processes concerning hydrometeor properties for the accurate representation of cloud radiative feedback.","PeriodicalId":100061,"journal":{"name":"Agricultural Meteorology","volume":"572 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/meteorology2030018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In atmospheric models, the representation of cloudiness is a direct linkage between the moisture amount and associated radiative forcing. This paper begins by providing a review of the parameterization of cloudiness that has been used for numerical weather predictions and climate studies. The inherent uncertainties in representing a partial fraction of clouds for radiation feedback and in evaluating it against the corresponding observations are focused. It is also stated that the major hydrometeor categories of water substances such as cloud ice and water that are responsible for cloud cover are readily available in modern weather and climate models. Inconsistencies in cloud cover and hydrometeors, even in the case of the prognostic method, are discussed. The compensating effect of cloudiness for radiative feedback is found to imply that the condensed water amount itself is more influential on the radiative forcing, rather than the accuracy of the cloudiness. Based on the above perspectives, an alternative diagnostic parameterization method is proposed, utilizing a monotonic relation between the cloud water amounts and cloudiness that are obtained from aircraft and satellite observations. The basic premise of this approach lies in the accuracy of the water substance in the models, indicating that future efforts need to be given to improvements in physical processes concerning hydrometeor properties for the accurate representation of cloud radiative feedback.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于大气模式的云量参数化:综述和新观点
在大气模式中,云量的表示是水汽量和相关辐射强迫之间的直接联系。本文首先回顾了用于数值天气预报和气候研究的云的参数化。在表示辐射反馈的部分云以及根据相应的观测对其进行评估时,重点讨论了固有的不确定性。报告还指出,在现代天气和气候模式中,可以很容易地获得主要的水成物类别,如云冰和水,它们是造成云层覆盖的原因。讨论了即使在预报方法的情况下,云量和水成物的不一致性。发现云量对辐射反馈的补偿作用意味着凝结水量本身对辐射强迫的影响更大,而不是云量的精度。基于上述观点,本文提出了一种替代的诊断参数化方法,该方法利用飞机和卫星观测获得的云水量与云量之间的单调关系。这种方法的基本前提是模型中水物质的准确性,这表明未来需要努力改进与水成物性质有关的物理过程,以便准确地表示云辐射反馈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Specific Features of the Land-Sea Contrast of Cloud Liquid Water Path in Northern Europe as Obtained from the Observations by the SEVIRI Instrument: Artefacts or Reality? Air Temperature Intermittency and Photofragment Excitation Espresso: A Global Deep Learning Model to Estimate Precipitation from Satellite Observations No City Left Behind: Building Climate Policy Bridges between the North and South Characteristics of Convective Parameters Derived from Rawinsonde and ERA5 Data Associated with Hailstorms in Northeastern Romania
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1