Chemical Upcycling of PET Waste towards Terephthalate Redox Nanoparticles for Energy Storage

N. Goujon, Jérémy Demarteau, Xabier Lopez de Pariza, N. Casado, H. Sardón, D. Mecerreyes
{"title":"Chemical Upcycling of PET Waste towards Terephthalate Redox Nanoparticles for Energy Storage","authors":"N. Goujon, Jérémy Demarteau, Xabier Lopez de Pariza, N. Casado, H. Sardón, D. Mecerreyes","doi":"10.3390/suschem2040034","DOIUrl":null,"url":null,"abstract":"Over 30 million ton of poly(ethylene terephthalate) (PET) is produced each year and no more than 60% of all PET bottles are reclaimed for recycling due to material property deteriorations during the mechanical recycling process. Herein, a sustainable approach is proposed to produce redox-active nanoparticles via the chemical upcycling of poly(ethylene terephthalate) (PET) waste for application in energy storage. Redox-active nanoparticles of sizes lower than 100 nm were prepared by emulsion polymerization of a methacrylic-terephthalate monomer obtained by a simple methacrylate functionalization of the depolymerization product of PET (i.e., bis-hydroxy(2-ethyl) terephthalate, BHET). The initial cyclic voltammetry results of the depolymerization product of PET used as a model compound show a reversible redox process, when using a 0.1 M tetrabutylammonium hexafluorophosphate/dimethyl sulfoxide electrolyte system, with a standard redox potential of −2.12 V vs. Fc/Fc+. Finally, the cycling performance of terephthalate nanoparticles was investigated using a 0.1 M TBAPF6 solution in acetonitrile as electrolyte in a three-electrode cell. The terephthalate anode electrode displays good cycling stability and performance at high C-rate (i.e., ≥5C), delivering a stable specific discharge capacity of 32.8 mAh.g−1 at a C-rate of 30 C, with a capacity retention of 94% after 100 cycles. However, a large hysteresis between the specific discharge and charge capacities and capacity fading are observed at lower C-rate (i.e., ≤2C), suggesting some irreversibility of redox reactions associated with the terephthalate moiety, in particular related to the oxidation process.","PeriodicalId":22103,"journal":{"name":"Sustainable Chemistry","volume":"33 6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/suschem2040034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Over 30 million ton of poly(ethylene terephthalate) (PET) is produced each year and no more than 60% of all PET bottles are reclaimed for recycling due to material property deteriorations during the mechanical recycling process. Herein, a sustainable approach is proposed to produce redox-active nanoparticles via the chemical upcycling of poly(ethylene terephthalate) (PET) waste for application in energy storage. Redox-active nanoparticles of sizes lower than 100 nm were prepared by emulsion polymerization of a methacrylic-terephthalate monomer obtained by a simple methacrylate functionalization of the depolymerization product of PET (i.e., bis-hydroxy(2-ethyl) terephthalate, BHET). The initial cyclic voltammetry results of the depolymerization product of PET used as a model compound show a reversible redox process, when using a 0.1 M tetrabutylammonium hexafluorophosphate/dimethyl sulfoxide electrolyte system, with a standard redox potential of −2.12 V vs. Fc/Fc+. Finally, the cycling performance of terephthalate nanoparticles was investigated using a 0.1 M TBAPF6 solution in acetonitrile as electrolyte in a three-electrode cell. The terephthalate anode electrode displays good cycling stability and performance at high C-rate (i.e., ≥5C), delivering a stable specific discharge capacity of 32.8 mAh.g−1 at a C-rate of 30 C, with a capacity retention of 94% after 100 cycles. However, a large hysteresis between the specific discharge and charge capacities and capacity fading are observed at lower C-rate (i.e., ≤2C), suggesting some irreversibility of redox reactions associated with the terephthalate moiety, in particular related to the oxidation process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PET废弃物化学升级制备对苯二甲酸盐氧化还原纳米颗粒储能研究
每年生产超过3000万吨的聚对苯二甲酸乙酯(PET),由于机械回收过程中材料性能的恶化,所有PET瓶的回收利用率不超过60%。本文提出了一种可持续的方法,通过化学升级回收聚对苯二甲酸乙酯(PET)废物来生产具有氧化还原活性的纳米颗粒,用于储能。通过对PET解聚产物(即双羟基(2-乙基)对苯二甲酸乙酯,BHET)进行简单的甲基丙烯酸酯功能化得到的甲基丙烯酸酯-对苯二甲酸乙酯单体进行乳液聚合,制备了尺寸小于100 nm的氧化还原活性纳米颗粒。当使用0.1 M四丁基六氟磷酸铵/二甲亚砜电解质体系,标准氧化还原电位为- 2.12 V vs. Fc/Fc+时,作为模型化合物的PET解聚产物的初始循环伏安法结果表明,其氧化还原过程是可逆的。最后,以0.1 M TBAPF6溶液为电解液,在三电极电池中研究了对苯二甲酸盐纳米颗粒的循环性能。对苯二甲酸盐阳极电极在高倍率(即≥5C)下具有良好的循环稳定性和性能,稳定的比放电容量为32.8 mAh。g−1在C率为30℃时,循环100次后容量保持率为94%。然而,在较低的c速率(即≤2C)下,观察到比放电和充电容量之间的大滞后和容量衰减,这表明与对苯二甲酸酯部分相关的氧化还原反应存在一些不可逆性,特别是与氧化过程有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aqueous Solution of Ionic Liquid Is an Efficient Substituting Solvent System for the Extraction of Alginate from Sargassum tenerrimum The Multifaceted Perspective on the Role of Green Synthesis of Nanoparticles in Promoting a Sustainable Green Economy Recent Progress in Turning Waste into Catalysts for Green Syntheses A Perspective on Solar-Driven Electrochemical Routes for Sustainable Methanol Production Waste Lignocellulosic Biomass as a Source for Bioethanol Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1