Combining Linear Spatial Filtering and Non-linear Parametric Processing for High-quality Spatial Sound Capturing

O. Thiergart, G. Milano, Emanuël Habets
{"title":"Combining Linear Spatial Filtering and Non-linear Parametric Processing for High-quality Spatial Sound Capturing","authors":"O. Thiergart, G. Milano, Emanuël Habets","doi":"10.1109/ICASSP.2019.8683515","DOIUrl":null,"url":null,"abstract":"Flexible spatial sound capturing and reproduction can be achieved with multiple microphones by using linear spatial filtering or non-linear parametric processing. The non-linear approaches usually provide a superior spatial resolution compared to the linear approaches but can result in artifacts due to violations of the sound field model. In this paper, we combine both approaches to achieve a high robustness against model violations and a high spatial resolution. We assume linear spatial filters that approximate the spatial responses of the desired output format and compensate remaining deviations with an optimal post filter. The post filter is computed such that the proposed approach behaves like a linear system when the spatial filters achieve the desired spatial response, and scales towards a non-linear system otherwise. Experimental results show that the proposed approach can significantly reduce distortions of existing parametric processing schemes especially when a sufficiently high number of microphones is available.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"14 1","pages":"571-575"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Flexible spatial sound capturing and reproduction can be achieved with multiple microphones by using linear spatial filtering or non-linear parametric processing. The non-linear approaches usually provide a superior spatial resolution compared to the linear approaches but can result in artifacts due to violations of the sound field model. In this paper, we combine both approaches to achieve a high robustness against model violations and a high spatial resolution. We assume linear spatial filters that approximate the spatial responses of the desired output format and compensate remaining deviations with an optimal post filter. The post filter is computed such that the proposed approach behaves like a linear system when the spatial filters achieve the desired spatial response, and scales towards a non-linear system otherwise. Experimental results show that the proposed approach can significantly reduce distortions of existing parametric processing schemes especially when a sufficiently high number of microphones is available.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合线性空间滤波和非线性参数处理的高质量空间声音捕获
通过使用线性空间滤波或非线性参数处理,可以实现灵活的空间声音捕获和再现。与线性方法相比,非线性方法通常提供更好的空间分辨率,但由于违反声场模型而导致伪影。在本文中,我们结合了这两种方法来实现对模型违规的高鲁棒性和高空间分辨率。我们假设线性空间滤波器近似期望输出格式的空间响应,并用最优后滤波器补偿剩余的偏差。后滤波器是这样计算的,当空间滤波器达到期望的空间响应时,所提出的方法表现得像一个线性系统,否则向非线性系统扩展。实验结果表明,该方法可以显著降低现有参数处理方案的失真,特别是在麦克风数量足够大的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Universal Acoustic Modeling Using Neural Mixture Models Speech Landmark Bigrams for Depression Detection from Naturalistic Smartphone Speech Robust M-estimation Based Matrix Completion When Can a System of Subnetworks Be Registered Uniquely? Learning Search Path for Region-level Image Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1