Deep Multi-channel Speech Source Separation with Time-frequency Masking for Spatially Filtered Microphone Input Signal

M. Togami
{"title":"Deep Multi-channel Speech Source Separation with Time-frequency Masking for Spatially Filtered Microphone Input Signal","authors":"M. Togami","doi":"10.23919/Eusipco47968.2020.9287810","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a multi-channel speech source separation technique which connects an unsupervised spatial filtering without a deep neural network (DNN) to a DNN-based speech source separation in a cascade manner. In the speech source separation technique, estimation of a covariance matrix is a highly important part. Recent studies showed that it is effective to estimate the covariance matrix by multiplying cross-correlation of microphone input signal with a time-frequency mask (TFM) inferred by the DNN. However, this assumption is not valid actually and overlapping of multiple speech sources lead to degradation of estimation accuracy of the multi-channel covariance matrix. Instead, we propose a multichannel covariance matrix estimation technique which estimates the covariance matrix by a TFM for the separated speech signal by the unsupervised spatial filtering. Pre-filtered signal can reduce overlapping of multiple speech sources and increase estimation accuracy of the covariance matrix. Experimental results show that the proposed estimation technique of the multichannel covariance matrix is effective.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"169 1","pages":"266-270"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a multi-channel speech source separation technique which connects an unsupervised spatial filtering without a deep neural network (DNN) to a DNN-based speech source separation in a cascade manner. In the speech source separation technique, estimation of a covariance matrix is a highly important part. Recent studies showed that it is effective to estimate the covariance matrix by multiplying cross-correlation of microphone input signal with a time-frequency mask (TFM) inferred by the DNN. However, this assumption is not valid actually and overlapping of multiple speech sources lead to degradation of estimation accuracy of the multi-channel covariance matrix. Instead, we propose a multichannel covariance matrix estimation technique which estimates the covariance matrix by a TFM for the separated speech signal by the unsupervised spatial filtering. Pre-filtered signal can reduce overlapping of multiple speech sources and increase estimation accuracy of the covariance matrix. Experimental results show that the proposed estimation technique of the multichannel covariance matrix is effective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间滤波麦克风输入信号的时频掩蔽深度多通道语音源分离
在本文中,我们提出了一种多通道语音源分离技术,该技术将无深度神经网络(DNN)的无监督空间滤波与基于DNN的语音源分离以级联方式连接起来。在语音源分离技术中,协方差矩阵的估计是一个非常重要的部分。最近的研究表明,将传声器输入信号的互相关与深度神经网络推断的时频掩模(TFM)相乘可以有效地估计出协方差矩阵。然而,这种假设实际上是不成立的,多个语音源的重叠会导致多通道协方差矩阵估计精度的下降。我们提出了一种多通道协方差矩阵估计技术,该技术通过无监督空间滤波对分离的语音信号进行TFM估计协方差矩阵。预滤波信号可以减少多个语音源的重叠,提高协方差矩阵的估计精度。实验结果表明,所提出的多通道协方差矩阵估计方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eusipco 2021 Cover Page A graph-theoretic sensor-selection scheme for covariance-based Motor Imagery (MI) decoding Hidden Markov Model Based Data-driven Calibration of Non-dispersive Infrared Gas Sensor Deep Transform Learning for Multi-Sensor Fusion Two Stages Parallel LMS Structure: A Pipelined Hardware Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1