{"title":"The human erythrocyte can become both a metabolic “Achilles’ Heel” and a “Trojan Horse”: Likely consequences of persistent excessive glycolysis","authors":"A. Hipkiss","doi":"10.15761/IFNM.1000244","DOIUrl":null,"url":null,"abstract":"There is convincing evidence that the glycolytic pathway whereby glucose is broken down to pyruvic acid and which occurs in most cells in the human body, is not necessarily a benign process. Much research has highlighted the deleterious effects of excessive glycolysis towards aging and lifespan [1-3], and the converse beneficial outcomes when glycolysis is partially suppressed [4-6]. The anti-aging effects of the mTOR inhibitor rapamycin can be explained, at least in part, by the fact that down-regulation of mTOR suppresses glycolysis and enhances mitogenesis and mitochondrial ATP synthesis, whilst upregulation of mTOR accelerates glycolysis [7-10]. This is because not only can glucose react non-enzymically with proteins to create advanced glycation endproducts (AGEs), but a number of the glycolytic intermediates are more reactive than glucose. The triose-phosphates, dihydroxyacetonephosphate (DHAP) and glyceraldehyde-3-phosphate (G3P), and their highly reactive decomposition product, methylglyoxal (MG), can all provoke synthesis of AGE (also called glycotoxins), following reaction with intracellular and extracellular proteins, nucleic acids and aminolipids [11-13]. Indeed, number of recent reviews and perspective pieces [14-16] have emphasized the role of dietary and endogenously generated glycotoxins inducing age-associated, deleterious effects throughout the body.","PeriodicalId":13631,"journal":{"name":"Integrative Food, Nutrition and Metabolism","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Food, Nutrition and Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15761/IFNM.1000244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
There is convincing evidence that the glycolytic pathway whereby glucose is broken down to pyruvic acid and which occurs in most cells in the human body, is not necessarily a benign process. Much research has highlighted the deleterious effects of excessive glycolysis towards aging and lifespan [1-3], and the converse beneficial outcomes when glycolysis is partially suppressed [4-6]. The anti-aging effects of the mTOR inhibitor rapamycin can be explained, at least in part, by the fact that down-regulation of mTOR suppresses glycolysis and enhances mitogenesis and mitochondrial ATP synthesis, whilst upregulation of mTOR accelerates glycolysis [7-10]. This is because not only can glucose react non-enzymically with proteins to create advanced glycation endproducts (AGEs), but a number of the glycolytic intermediates are more reactive than glucose. The triose-phosphates, dihydroxyacetonephosphate (DHAP) and glyceraldehyde-3-phosphate (G3P), and their highly reactive decomposition product, methylglyoxal (MG), can all provoke synthesis of AGE (also called glycotoxins), following reaction with intracellular and extracellular proteins, nucleic acids and aminolipids [11-13]. Indeed, number of recent reviews and perspective pieces [14-16] have emphasized the role of dietary and endogenously generated glycotoxins inducing age-associated, deleterious effects throughout the body.