Whistling shares a common tongue with speech: bioacoustics from real-time MRI of the human vocal tract

M. Belyk, B. Schultz, J. Correia, D. Beal, S. Kotz
{"title":"Whistling shares a common tongue with speech: bioacoustics from real-time MRI of the human vocal tract","authors":"M. Belyk, B. Schultz, J. Correia, D. Beal, S. Kotz","doi":"10.1098/rspb.2019.1116","DOIUrl":null,"url":null,"abstract":"Most human communication is carried by modulations of the voice. However, a wide range of cultures has developed alternative forms of communication that make use of a whistled sound source. For example, whistling is used as a highly salient signal for capturing attention, and can have iconic cultural meanings such as the catcall, enact a formal code as in boatswain's calls or stand as a proxy for speech in whistled languages. We used real-time magnetic resonance imaging to examine the muscular control of whistling to describe a strong association between the shape of the tongue and the whistled frequency. This bioacoustic profile parallels the use of the tongue in vowel production. This is consistent with the role of whistled languages as proxies for spoken languages, in which one of the acoustical features of speech sounds is substituted with a frequency-modulated whistle. Furthermore, previous evidence that non-human apes may be capable of learning to whistle from humans suggests that these animals may have similar sensorimotor abilities to those that are used to support speech in humans.","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspb.2019.1116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Most human communication is carried by modulations of the voice. However, a wide range of cultures has developed alternative forms of communication that make use of a whistled sound source. For example, whistling is used as a highly salient signal for capturing attention, and can have iconic cultural meanings such as the catcall, enact a formal code as in boatswain's calls or stand as a proxy for speech in whistled languages. We used real-time magnetic resonance imaging to examine the muscular control of whistling to describe a strong association between the shape of the tongue and the whistled frequency. This bioacoustic profile parallels the use of the tongue in vowel production. This is consistent with the role of whistled languages as proxies for spoken languages, in which one of the acoustical features of speech sounds is substituted with a frequency-modulated whistle. Furthermore, previous evidence that non-human apes may be capable of learning to whistle from humans suggests that these animals may have similar sensorimotor abilities to those that are used to support speech in humans.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
吹口哨和说话有共同的语言:人类声道实时核磁共振成像的生物声学
大多数人类交流是通过声音的调制来进行的。然而,各种各样的文化已经发展出了利用口哨声源的其他交流形式。例如,口哨被用作吸引注意力的高度突出的信号,可以具有标志性的文化含义,如嘘声,制定正式的代码,如水手长的呼叫,或作为口哨语言的代表。我们使用实时磁共振成像来检查吹口哨的肌肉控制,以描述舌头形状和吹口哨频率之间的强烈联系。这种生物声学轮廓与舌头在元音产生中的使用相似。这与口哨声作为口语替代品的作用是一致的,在口哨声中,语音的声学特征之一被调频口哨声取代。此外,先前有证据表明,非人类猿类可能能够从人类那里学习口哨,这表明这些动物可能具有与人类用来支持语言的感觉运动能力相似的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Still air resistance during walking and running Functional plasticity of the swim bladder as an acoustic organ for communication in a vocal fish Millennial processes of population decline, range contraction and near extinction of the European bison Variation in personality shaped by evolutionary history, genotype and developmental plasticity in response to feeding modalities in the Arctic charr Magnetic fields, cancer and circadian rhythms: hypotheses on the relevance of intermittence and cycling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1