Fabrication and Tailoring the Structural and Dielectric Characteristics of GO/Sb2O3/PMMA/PC Quaternary Nanostructures For Solid State Electronics Nanodevices
{"title":"Fabrication and Tailoring the Structural and Dielectric Characteristics of GO/Sb2O3/PMMA/PC Quaternary Nanostructures For Solid State Electronics Nanodevices","authors":"Dhay Ali Sabur, M. Habeeb, A. Hashim","doi":"10.15330/pcss.24.1.173-180","DOIUrl":null,"url":null,"abstract":"In this paper, films of (PMMA-PC/Sb2O3-GO) quaternary nanostructures were prepared by casting method with different concentrations of Sb2O3/GO NPs are (0, 1.4 %, 2.8 %, 4.2 %,and 5.6 %). The structural and dielectric characteristics of nanostructures system (PMMA-PC/Sb2O3-GO) have been explored to use in different solid state electronics nanodevices applications. The morphology of (PMMA-PC/Sb2O3-GO) nanostructures films was studied using a scanning electron microscope (SEM). SEM images indicate a large number of uniform and coherent aggregates or chunks. The Fourier transform infrared spectroscopy(FTIR) analysis were studied to show the interactions between the Sb2O3/GO NPs and PMMA/PC blend. The dielectric properties of nanostructures films were investigated in the frequency range (100HZ-5MHZ). The dielectric constant, dielectric loss, and A.C electrical conductivity increase with the concentration of (Sb2O3-GO) NPs. The dielectric constant and dielectric loss were reduced, whereas electrical conductivity increased with frequency. Finally, results showed the PMMA-PC/Sb2O3-GO nanostructures may be considered as promising materials for solid state electronics nanodevices.","PeriodicalId":20137,"journal":{"name":"Physics and Chemistry of Solid State","volume":"11 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Solid State","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/pcss.24.1.173-180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, films of (PMMA-PC/Sb2O3-GO) quaternary nanostructures were prepared by casting method with different concentrations of Sb2O3/GO NPs are (0, 1.4 %, 2.8 %, 4.2 %,and 5.6 %). The structural and dielectric characteristics of nanostructures system (PMMA-PC/Sb2O3-GO) have been explored to use in different solid state electronics nanodevices applications. The morphology of (PMMA-PC/Sb2O3-GO) nanostructures films was studied using a scanning electron microscope (SEM). SEM images indicate a large number of uniform and coherent aggregates or chunks. The Fourier transform infrared spectroscopy(FTIR) analysis were studied to show the interactions between the Sb2O3/GO NPs and PMMA/PC blend. The dielectric properties of nanostructures films were investigated in the frequency range (100HZ-5MHZ). The dielectric constant, dielectric loss, and A.C electrical conductivity increase with the concentration of (Sb2O3-GO) NPs. The dielectric constant and dielectric loss were reduced, whereas electrical conductivity increased with frequency. Finally, results showed the PMMA-PC/Sb2O3-GO nanostructures may be considered as promising materials for solid state electronics nanodevices.