Dynamic Multi-swarm Particle Swarm Optimization Based on Elite Learning

Yichao Tang, Bo Wei, Xuewen Xia, Ling Gui
{"title":"Dynamic Multi-swarm Particle Swarm Optimization Based on Elite Learning","authors":"Yichao Tang, Bo Wei, Xuewen Xia, Ling Gui","doi":"10.1109/SSCI44817.2019.9002680","DOIUrl":null,"url":null,"abstract":"This paper presents a dynamic multi-swarm particle swarm optimization based on elite learning (DMS-PSO-EL) that consists of two kinds of sub-swarms to trade-off between exploitation and exploration capabilities. In DMS-PSO-EL, the whole population is divided into several DMS sub-swarms and one following sub-swarm on the basis of the fitness value rankings. In the evolution process, these DMS sub-swarms provide the exploration ability through dynamic regrouping strategy, while following sub-swarm enhances the exploitation ability by learning elite particles from DMS sub-swarms. Besides, randomly regrouping schedule regroups the entire population in each regrouping period aiming to avoid premature convergence and enhance inferior particles’ searching ability. Comparing DMSPSO-EL with other 8 peer algorithms on CEC2013 benchmark functions, the results suggest that DMS-PSO-EL demonstrates superior performance for solving different types of functions. Besides that, the massive experiments show the superiority of the proposed strategy used in DMS-PSO-EL.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"128 1","pages":"2311-2318"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9002680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a dynamic multi-swarm particle swarm optimization based on elite learning (DMS-PSO-EL) that consists of two kinds of sub-swarms to trade-off between exploitation and exploration capabilities. In DMS-PSO-EL, the whole population is divided into several DMS sub-swarms and one following sub-swarm on the basis of the fitness value rankings. In the evolution process, these DMS sub-swarms provide the exploration ability through dynamic regrouping strategy, while following sub-swarm enhances the exploitation ability by learning elite particles from DMS sub-swarms. Besides, randomly regrouping schedule regroups the entire population in each regrouping period aiming to avoid premature convergence and enhance inferior particles’ searching ability. Comparing DMSPSO-EL with other 8 peer algorithms on CEC2013 benchmark functions, the results suggest that DMS-PSO-EL demonstrates superior performance for solving different types of functions. Besides that, the massive experiments show the superiority of the proposed strategy used in DMS-PSO-EL.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于精英学习的动态多群粒子群优化
提出了一种基于精英学习的动态多群粒子群优化算法(DMS-PSO-EL),该算法由两类子群组成,在开发和探测能力之间进行权衡。在DMS- pso - el算法中,根据适应度排序将种群划分为多个DMS子群和一个跟随子群。在进化过程中,这些DMS子群通过动态重组策略提供了探测能力,而后续子群通过从DMS子群中学习精英粒子来增强开发能力。此外,随机重组方案在每个重组周期对整个种群进行重组,避免过早收敛,增强弱粒子的搜索能力。将DMSPSO-EL算法与其他8种同类算法在CEC2013基准函数上进行比较,结果表明DMS-PSO-EL算法在求解不同类型函数时表现出优异的性能。此外,大量的实验证明了该策略在DMS-PSO-EL中应用的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planning for millions of NPCs in Real-Time Improving Diversity in Concept Drift Ensembles Self-Organizing Transformations for Automatic Feature Engineering Corrosion-like Defect Severity Estimation in Pipelines Using Convolutional Neural Networks Heuristic Hybridization for CaRSP, a multilevel decision problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1