{"title":"EBMBDT: Effective Block Matching Based Denoising Technique using dual tree complex wavelet transform","authors":"M. Selvi","doi":"10.22630/mgv.2014.23.3.3","DOIUrl":null,"url":null,"abstract":"In processing and investigation of digital image denoising of images is hence very important. In this paper, we propose a Hybrid de-noising technique by using Dual Tree Complex Wavelet Transform (DTCWT) and Block Matching Algorithm (BMA). DTCWT and BMA is a method to identify the noisy pixel information and remove the noise in the image. The noisy image is given as input at first. Then, bring together the comparable image blocks into the load. Afterwards Complex Wavelet Transform (CWT) is applied to each block in the group. The analytic filters are made use of by CWT, i.e. their real and imaginary parts from the Hilbert Transform (HT) pair, defending magnitude-phase representation, shift invariance, and no aliasing. After that, adaptive thresholding is applied to enhance the image in which the denoising result is visually far superior. The proposed method has been compared with our previous de-noising technique with Gaussian and salt-pepper noise. From the results, we can conclude that the proposed de-noising technique have shown better values in the performance analysis.","PeriodicalId":39750,"journal":{"name":"Machine Graphics and Vision","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Graphics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/mgv.2014.23.3.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In processing and investigation of digital image denoising of images is hence very important. In this paper, we propose a Hybrid de-noising technique by using Dual Tree Complex Wavelet Transform (DTCWT) and Block Matching Algorithm (BMA). DTCWT and BMA is a method to identify the noisy pixel information and remove the noise in the image. The noisy image is given as input at first. Then, bring together the comparable image blocks into the load. Afterwards Complex Wavelet Transform (CWT) is applied to each block in the group. The analytic filters are made use of by CWT, i.e. their real and imaginary parts from the Hilbert Transform (HT) pair, defending magnitude-phase representation, shift invariance, and no aliasing. After that, adaptive thresholding is applied to enhance the image in which the denoising result is visually far superior. The proposed method has been compared with our previous de-noising technique with Gaussian and salt-pepper noise. From the results, we can conclude that the proposed de-noising technique have shown better values in the performance analysis.
期刊介绍:
Machine GRAPHICS & VISION (MGV) is a refereed international journal, published quarterly, providing a scientific exchange forum and an authoritative source of information in the field of, in general, pictorial information exchange between computers and their environment, including applications of visual and graphical computer systems. The journal concentrates on theoretical and computational models underlying computer generated, analysed, or otherwise processed imagery, in particular: - image processing - scene analysis, modeling, and understanding - machine vision - pattern matching and pattern recognition - image synthesis, including three-dimensional imaging and solid modeling