Misclassification Error, Binary Regression Bias, and Reliability in Multidimensional Poverty Measurement: An Estimation Approach Based on Bayesian Modelling

IF 0.6 Q3 SOCIAL SCIENCES, INTERDISCIPLINARY Measurement-Interdisciplinary Research and Perspectives Pub Date : 2023-04-03 DOI:10.1080/15366367.2022.2026104
Héctor Nájera
{"title":"Misclassification Error, Binary Regression Bias, and Reliability in Multidimensional Poverty Measurement: An Estimation Approach Based on Bayesian Modelling","authors":"Héctor Nájera","doi":"10.1080/15366367.2022.2026104","DOIUrl":null,"url":null,"abstract":"ABSTRACT Measurement error affects the quality of population orderings of an index and, hence, increases the misclassification of the poor and the non-poor groups and affects statistical inferences from binary regression models. Hence, the conclusions about the extent, profile, and distribution of poverty are likely to be misleading. However, the size and type (false positive/negatives) of classification error have remained untraceable in poverty research. This paper draws upon previous theoretical literature to develop a Bayesian-based estimator of population misclassification and binary-regression coefficient bias. The study uses the reliability values of existing poverty indices to set up a Monte Carlo study based on factor mixture models to illustrate the connections between measurement error, misclassification, and bias and evaluate the procedure and discusses its importance for real-world applications.","PeriodicalId":46596,"journal":{"name":"Measurement-Interdisciplinary Research and Perspectives","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement-Interdisciplinary Research and Perspectives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15366367.2022.2026104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT Measurement error affects the quality of population orderings of an index and, hence, increases the misclassification of the poor and the non-poor groups and affects statistical inferences from binary regression models. Hence, the conclusions about the extent, profile, and distribution of poverty are likely to be misleading. However, the size and type (false positive/negatives) of classification error have remained untraceable in poverty research. This paper draws upon previous theoretical literature to develop a Bayesian-based estimator of population misclassification and binary-regression coefficient bias. The study uses the reliability values of existing poverty indices to set up a Monte Carlo study based on factor mixture models to illustrate the connections between measurement error, misclassification, and bias and evaluate the procedure and discusses its importance for real-world applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多维贫困测量中的误分类误差、二元回归偏差和可靠性:基于贝叶斯模型的估计方法
测量误差会影响指数的人口排序质量,从而增加对贫困和非贫困群体的错误分类,并影响二元回归模型的统计推断。因此,关于贫困程度、状况和分布的结论很可能具有误导性。然而,在贫困研究中,分类误差的大小和类型(假阳性/假阴性)仍然无法追踪。本文在借鉴前人理论文献的基础上,提出了一种基于贝叶斯的种群误分类和二元回归系数偏差估计方法。本研究利用现有贫困指数的信度值,建立了基于因子混合模型的蒙特卡罗研究,以说明测量误差、误分类和偏差之间的联系,并对该过程进行了评估,并讨论了其在现实应用中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Measurement-Interdisciplinary Research and Perspectives
Measurement-Interdisciplinary Research and Perspectives SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
1.80
自引率
0.00%
发文量
23
期刊最新文献
A Latent Trait Approach to the Measurement of Physical Fitness Application of Machine Learning Techniques for Fake News Classification The Use of Multidimensional Item Response Theory Estimations in Controlling Differential Item Functioning Opinion Instability and Measurement Errors: A G-Theory Analysis of College Students Predicting the Risk of Diabetes and Heart Disease with Machine Learning Classifiers: The Mediation Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1