{"title":"Visual-inertial SLAM aided estimation of anchor poses and sensor error model parameters of UWB radio modules","authors":"P. Lutz, M. J. Schuster, Florian Steidle","doi":"10.1109/ICAR46387.2019.8981544","DOIUrl":null,"url":null,"abstract":"Local positioning technologies based on ultrawideband (UWB) ranging have become broadly available and accurate enough for various robotic applications. In an infrastructure setup with static anchor radio modules one common problem is to determine their global positions within the world coordinate frame. Furthermore, issues like the complex radiofrequency wave propagation properties make it difficult to design a consistent sensor error model which generalizes well across different anchor setups and environments. Combining radio based local positioning systems with a visual-inertial navigation system (VINS) can provide very accurate pose estimates for calibration of the radio based localization modules and at the same time alleviate the inherent drift in visual-inertial navigation. We propose an approach to utilize a visual-inertial SLAM system using fish-eye stereo cameras and an IMU to estimate the anchor 6D poses as well as the parameters of an UWB module sensor error model on a micro-aerial-vehicle (MAV). Fiducial markers on all anchor radio modules are used as artificial landmarks within the SLAM system to get accurate anchor module pose estimates. Index Terms-MAVs, mobile robots, SLAM, UWB, radio localization, sensor calibration","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"30 1","pages":"739-746"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Local positioning technologies based on ultrawideband (UWB) ranging have become broadly available and accurate enough for various robotic applications. In an infrastructure setup with static anchor radio modules one common problem is to determine their global positions within the world coordinate frame. Furthermore, issues like the complex radiofrequency wave propagation properties make it difficult to design a consistent sensor error model which generalizes well across different anchor setups and environments. Combining radio based local positioning systems with a visual-inertial navigation system (VINS) can provide very accurate pose estimates for calibration of the radio based localization modules and at the same time alleviate the inherent drift in visual-inertial navigation. We propose an approach to utilize a visual-inertial SLAM system using fish-eye stereo cameras and an IMU to estimate the anchor 6D poses as well as the parameters of an UWB module sensor error model on a micro-aerial-vehicle (MAV). Fiducial markers on all anchor radio modules are used as artificial landmarks within the SLAM system to get accurate anchor module pose estimates. Index Terms-MAVs, mobile robots, SLAM, UWB, radio localization, sensor calibration