Visual-inertial SLAM aided estimation of anchor poses and sensor error model parameters of UWB radio modules

P. Lutz, M. J. Schuster, Florian Steidle
{"title":"Visual-inertial SLAM aided estimation of anchor poses and sensor error model parameters of UWB radio modules","authors":"P. Lutz, M. J. Schuster, Florian Steidle","doi":"10.1109/ICAR46387.2019.8981544","DOIUrl":null,"url":null,"abstract":"Local positioning technologies based on ultrawideband (UWB) ranging have become broadly available and accurate enough for various robotic applications. In an infrastructure setup with static anchor radio modules one common problem is to determine their global positions within the world coordinate frame. Furthermore, issues like the complex radiofrequency wave propagation properties make it difficult to design a consistent sensor error model which generalizes well across different anchor setups and environments. Combining radio based local positioning systems with a visual-inertial navigation system (VINS) can provide very accurate pose estimates for calibration of the radio based localization modules and at the same time alleviate the inherent drift in visual-inertial navigation. We propose an approach to utilize a visual-inertial SLAM system using fish-eye stereo cameras and an IMU to estimate the anchor 6D poses as well as the parameters of an UWB module sensor error model on a micro-aerial-vehicle (MAV). Fiducial markers on all anchor radio modules are used as artificial landmarks within the SLAM system to get accurate anchor module pose estimates. Index Terms-MAVs, mobile robots, SLAM, UWB, radio localization, sensor calibration","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"30 1","pages":"739-746"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Local positioning technologies based on ultrawideband (UWB) ranging have become broadly available and accurate enough for various robotic applications. In an infrastructure setup with static anchor radio modules one common problem is to determine their global positions within the world coordinate frame. Furthermore, issues like the complex radiofrequency wave propagation properties make it difficult to design a consistent sensor error model which generalizes well across different anchor setups and environments. Combining radio based local positioning systems with a visual-inertial navigation system (VINS) can provide very accurate pose estimates for calibration of the radio based localization modules and at the same time alleviate the inherent drift in visual-inertial navigation. We propose an approach to utilize a visual-inertial SLAM system using fish-eye stereo cameras and an IMU to estimate the anchor 6D poses as well as the parameters of an UWB module sensor error model on a micro-aerial-vehicle (MAV). Fiducial markers on all anchor radio modules are used as artificial landmarks within the SLAM system to get accurate anchor module pose estimates. Index Terms-MAVs, mobile robots, SLAM, UWB, radio localization, sensor calibration
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超宽带无线电模块锚位和传感器误差模型参数的视惯性SLAM辅助估计
基于超宽带(UWB)测距的局部定位技术已经广泛应用于各种机器人应用,并且足够精确。在具有静态锚定无线电模块的基础设施设置中,一个常见的问题是确定它们在世界坐标框架内的全局位置。此外,复杂的射频波传播特性等问题使得很难设计出一致的传感器误差模型,该模型可以很好地适用于不同的锚点设置和环境。将无线电局部定位系统与视觉惯性导航系统相结合,可以为无线电定位模块的标定提供非常精确的位姿估计,同时减轻了视觉惯性导航固有的漂移。我们提出了一种利用视觉惯性SLAM系统的方法,该系统使用鱼眼立体摄像机和IMU来估计锚点6D姿势以及微型飞行器(MAV)上的超宽带模块传感器误差模型的参数。所有锚点无线电模块上的基准标记被用作SLAM系统中的人工地标,以获得准确的锚点模块姿态估计。索引术语- mavs,移动机器人,SLAM,超宽带,无线电定位,传感器校准
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Domain Randomization Techniques for Transfer Learning Robotito: programming robots from preschool to undergraduate school level A Novel Approach for Parameter Extraction of an NMPC-based Visual Follower Model Automated Conflict Resolution of Lane Change Utilizing Probability Collectives Estimating and Localizing External Forces Applied on Flexible Instruments by Shape Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1