{"title":"Low complexity subband analysis using quadrature mirror filters","authors":"A. Chopra, William Reid, B. Evans","doi":"10.1109/ICASSP.2014.6854558","DOIUrl":null,"url":null,"abstract":"In this article, a novel method of performing subband analysis of digital signals is proposed. Conventional subband decomposition algorithms typically use a binary tree filterbank structure comprised of halfband filters. Due to design limitations of finite length filters, conventional decomposition algorithms typically suffer from interference due to aliasing. While longer halfband filters may reduce aliasing, such filters also increase latency and implementation complexity. Our proposed algorithm uses a novel structure of quadrature mirror filters to ensure aliasing is present outside of the spectral region of interest. Simulation results indicate that, compared to conventional algorithms, the proposed algorithm 1) reduces interference from aliasing by over 30dB, 2) reduces signal processing latency, and 3) reduces implementation complexity.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"78 1","pages":"5021-5025"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this article, a novel method of performing subband analysis of digital signals is proposed. Conventional subband decomposition algorithms typically use a binary tree filterbank structure comprised of halfband filters. Due to design limitations of finite length filters, conventional decomposition algorithms typically suffer from interference due to aliasing. While longer halfband filters may reduce aliasing, such filters also increase latency and implementation complexity. Our proposed algorithm uses a novel structure of quadrature mirror filters to ensure aliasing is present outside of the spectral region of interest. Simulation results indicate that, compared to conventional algorithms, the proposed algorithm 1) reduces interference from aliasing by over 30dB, 2) reduces signal processing latency, and 3) reduces implementation complexity.