A Semantic Framework Supporting Multilayer Networks Analysis for Rare Diseases

IF 4.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal on Semantic Web and Information Systems Pub Date : 2022-01-01 DOI:10.4018/ijswis.297141
N. Capuano, P. Foggia, L. Greco, Pierluigi Ritrovato
{"title":"A Semantic Framework Supporting Multilayer Networks Analysis for Rare Diseases","authors":"N. Capuano, P. Foggia, L. Greco, Pierluigi Ritrovato","doi":"10.4018/ijswis.297141","DOIUrl":null,"url":null,"abstract":"Understanding the role played by genetic variations in diseases, exploring genomic variants and discovering disease-associated loci are among the most pressing challenges of genomic medicine. A huge and ever-increasing amount of information is available to researchers to address these challenges. Unfortunately, it is stored in fragmented ontologies and databases, which use heterogeneous formats and poorly integrated schemas. To overcome these limitations, we propose a linked data approach, based on the formalism of multilayer networks, able to integrate and harmonize biomedical information from multiple sources into a single dense network covering different aspects on Neuroendocrine Neoplasms (NENs). The proposed integration schema consists of three interconnected layers representing, respectively, information on the disease, on the affected genes, on the related biological processes and molecular functions. An easy-to-use client-server application was also developed to browse and search for information on the model supporting multilayer network analysis.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"30 1","pages":"1-22"},"PeriodicalIF":4.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.297141","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

Abstract

Understanding the role played by genetic variations in diseases, exploring genomic variants and discovering disease-associated loci are among the most pressing challenges of genomic medicine. A huge and ever-increasing amount of information is available to researchers to address these challenges. Unfortunately, it is stored in fragmented ontologies and databases, which use heterogeneous formats and poorly integrated schemas. To overcome these limitations, we propose a linked data approach, based on the formalism of multilayer networks, able to integrate and harmonize biomedical information from multiple sources into a single dense network covering different aspects on Neuroendocrine Neoplasms (NENs). The proposed integration schema consists of three interconnected layers representing, respectively, information on the disease, on the affected genes, on the related biological processes and molecular functions. An easy-to-use client-server application was also developed to browse and search for information on the model supporting multilayer network analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持罕见病多层网络分析的语义框架
了解遗传变异在疾病中的作用,探索基因组变异和发现与疾病相关的基因座是基因组医学最紧迫的挑战之一。研究人员可以获得大量且不断增加的信息来应对这些挑战。不幸的是,它存储在碎片化的本体和数据库中,这些本体和数据库使用异构格式和集成不良的模式。为了克服这些限制,我们提出了一种基于多层网络形式的关联数据方法,能够将来自多个来源的生物医学信息整合和协调成一个覆盖神经内分泌肿瘤(NENs)不同方面的单一密集网络。所提出的整合模式由三个相互关联的层组成,分别代表疾病信息、受影响基因信息、相关生物过程信息和分子功能信息。还开发了一个易于使用的客户机-服务器应用程序,用于浏览和搜索有关支持多层网络分析的模型的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
12.50%
发文量
51
审稿时长
20 months
期刊介绍: The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.
期刊最新文献
A Web Semantic-Based Text Analysis Approach for Enhancing Named Entity Recognition Using PU-Learning and Negative Sampling Blockchain-Based Lightweight Authentication Mechanisms for Industrial Internet of Things and Information Systems A Network Intrusion Detection Method for Information Systems Using Federated Learning and Improved Transformer Semantic Trajectory Planning for Industrial Robotics Digital Copyright Management Mechanism Based on Dynamic Encryption for Multiplatform Browsers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1