N. Capuano, P. Foggia, L. Greco, Pierluigi Ritrovato
{"title":"A Semantic Framework Supporting Multilayer Networks Analysis for Rare Diseases","authors":"N. Capuano, P. Foggia, L. Greco, Pierluigi Ritrovato","doi":"10.4018/ijswis.297141","DOIUrl":null,"url":null,"abstract":"Understanding the role played by genetic variations in diseases, exploring genomic variants and discovering disease-associated loci are among the most pressing challenges of genomic medicine. A huge and ever-increasing amount of information is available to researchers to address these challenges. Unfortunately, it is stored in fragmented ontologies and databases, which use heterogeneous formats and poorly integrated schemas. To overcome these limitations, we propose a linked data approach, based on the formalism of multilayer networks, able to integrate and harmonize biomedical information from multiple sources into a single dense network covering different aspects on Neuroendocrine Neoplasms (NENs). The proposed integration schema consists of three interconnected layers representing, respectively, information on the disease, on the affected genes, on the related biological processes and molecular functions. An easy-to-use client-server application was also developed to browse and search for information on the model supporting multilayer network analysis.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"30 1","pages":"1-22"},"PeriodicalIF":4.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.297141","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2
Abstract
Understanding the role played by genetic variations in diseases, exploring genomic variants and discovering disease-associated loci are among the most pressing challenges of genomic medicine. A huge and ever-increasing amount of information is available to researchers to address these challenges. Unfortunately, it is stored in fragmented ontologies and databases, which use heterogeneous formats and poorly integrated schemas. To overcome these limitations, we propose a linked data approach, based on the formalism of multilayer networks, able to integrate and harmonize biomedical information from multiple sources into a single dense network covering different aspects on Neuroendocrine Neoplasms (NENs). The proposed integration schema consists of three interconnected layers representing, respectively, information on the disease, on the affected genes, on the related biological processes and molecular functions. An easy-to-use client-server application was also developed to browse and search for information on the model supporting multilayer network analysis.
期刊介绍:
The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.