Code relatives: detecting similarly behaving software

Fang-Hsiang Su, Jonathan Bell, Kenneth Harvey, S. Sethumadhavan, G. Kaiser, T. Jebara
{"title":"Code relatives: detecting similarly behaving software","authors":"Fang-Hsiang Su, Jonathan Bell, Kenneth Harvey, S. Sethumadhavan, G. Kaiser, T. Jebara","doi":"10.1145/2950290.2950321","DOIUrl":null,"url":null,"abstract":"Detecting “similar code” is useful for many software engineering tasks. Current tools can help detect code with statically similar syntactic and–or semantic features (code clones) and with dynamically similar functional input/output (simions). Unfortunately, some code fragments that behave similarly at the finer granularity of their execution traces may be ignored. In this paper, we propose the term “code relatives” to refer to code with similar execution behavior. We define code relatives and then present DyCLINK, our approach to detecting code relatives within and across codebases. DyCLINK records instruction-level traces from sample executions, organizes the traces into instruction-level dynamic dependence graphs, and employs our specialized subgraph matching algorithm to efficiently compare the executions of candidate code relatives. In our experiments, DyCLINK analyzed 422+ million prospective subgraph matches in only 43 minutes. We compared DyCLINK to one static code clone detector from the community and to our implementation of a dynamic simion detector. The results show that DyCLINK effectively detects code relatives with a reasonable analysis time.","PeriodicalId":20532,"journal":{"name":"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":"2006 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2950290.2950321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

Detecting “similar code” is useful for many software engineering tasks. Current tools can help detect code with statically similar syntactic and–or semantic features (code clones) and with dynamically similar functional input/output (simions). Unfortunately, some code fragments that behave similarly at the finer granularity of their execution traces may be ignored. In this paper, we propose the term “code relatives” to refer to code with similar execution behavior. We define code relatives and then present DyCLINK, our approach to detecting code relatives within and across codebases. DyCLINK records instruction-level traces from sample executions, organizes the traces into instruction-level dynamic dependence graphs, and employs our specialized subgraph matching algorithm to efficiently compare the executions of candidate code relatives. In our experiments, DyCLINK analyzed 422+ million prospective subgraph matches in only 43 minutes. We compared DyCLINK to one static code clone detector from the community and to our implementation of a dynamic simion detector. The results show that DyCLINK effectively detects code relatives with a reasonable analysis time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
代码相关:检测类似行为的软件
检测“相似代码”对于许多软件工程任务都很有用。当前的工具可以帮助检测具有静态相似语法和/或语义特性(代码克隆)和动态相似功能输入/输出(模拟)的代码。不幸的是,一些在执行轨迹的更细粒度上表现相似的代码片段可能会被忽略。在本文中,我们提出了“代码相关”一词来指代具有相似执行行为的代码。我们定义了代码相关性,然后介绍了DyCLINK,这是我们在代码库内部和代码库之间检测代码相关性的方法。DyCLINK记录样本执行的指令级跟踪,将这些跟踪组织到指令级动态依赖图中,并使用我们专门的子图匹配算法来有效地比较候选代码相关项的执行。在我们的实验中,DyCLINK仅在43分钟内分析了4.22亿个潜在子图匹配。我们将DyCLINK与来自社区的一个静态代码克隆检测器和我们实现的一个动态克隆检测器进行了比较。结果表明,DyCLINK可以在合理的分析时间内有效地检测代码相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of fault localization techniques Model, execute, and deploy: answering the hard questions in end-user programming (showcase) Guided code synthesis using deep neural networks Automated change impact analysis between SysML models of requirements and design Sustainable software design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1