{"title":"Structure recognition of nonlinear discrete-time systems by neural networks","authors":"A. M. Elramsisi, M. Zohdy, N. Loh","doi":"10.1109/ICSMC.1989.71469","DOIUrl":null,"url":null,"abstract":"A technique is proposed to identify the structure as well as the parameters of nonlinear discrete-time system models. The structure is represented in a frequency-position domain of Gabor basis functions (GBFs). A simplification to the GBFs is also presented, where the spatial Gaussian envelope of GBFs is replaced with a triangular one. A modification to the GBFs has also been introduced in order to suppress noise effects on the procedure. A three-layered neural network, augmented with nonuniform sampling, is described for solving the system identification problem.<<ETX>>","PeriodicalId":72691,"journal":{"name":"Conference proceedings. IEEE International Conference on Systems, Man, and Cybernetics","volume":"2007 1","pages":"1098-1103 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"1989-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings. IEEE International Conference on Systems, Man, and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSMC.1989.71469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A technique is proposed to identify the structure as well as the parameters of nonlinear discrete-time system models. The structure is represented in a frequency-position domain of Gabor basis functions (GBFs). A simplification to the GBFs is also presented, where the spatial Gaussian envelope of GBFs is replaced with a triangular one. A modification to the GBFs has also been introduced in order to suppress noise effects on the procedure. A three-layered neural network, augmented with nonuniform sampling, is described for solving the system identification problem.<>