下载PDF
{"title":"Isolation and Immunofluorescent Staining of Fresh Rat Pia–Arachnoid Complex Tissue for Micromechanical Characterization","authors":"Zeynep M. Suar, Gloria Fabris, Mehmet Kurt","doi":"10.1002/cpns.83","DOIUrl":null,"url":null,"abstract":"<p>In this article, we describe a protocol for the isolation and staining of fresh tissue of the inner rat meningeal layers, or pia–arachnoid complex (PAC). The PAC is believed to act as a mechanical damper offering a fundamental layer of protection against brain injury; however, its overall mechanical properties are still rather unexplored. In order to perform micromechanical measurements on the PAC, the tissue must be extracted and characterized while maintaining its native mechanical properties (i.e., avoiding any chemical or physical modification that could alter it). In light of this need, we developed a protocol for the immunofluorescent staining of fresh PAC tissue that does not require any fixation or permeabilization step. This approach will allow researchers to investigate important properties of the anatomy of ex vivo PAC tissue while at the same time offering a platform for the mechanical analysis of this complex material. © 2019 by John Wiley & Sons, Inc.</p><p><b>Basic Protocol 1</b>: Isolation of fresh rat pia–arachnoid complex tissue</p><p><b>Basic Protocol 2</b>: Fresh immunofluorescent staining of rat pia–arachnoid complex tissue</p><p><b>Alternate Protocol</b>: Adhesion of pia–arachnoid complex tissue to glass slides for micromechanical characterization</p>","PeriodicalId":40016,"journal":{"name":"Current Protocols in Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpns.83","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpns.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 3
引用
批量引用
Abstract
In this article, we describe a protocol for the isolation and staining of fresh tissue of the inner rat meningeal layers, or pia–arachnoid complex (PAC). The PAC is believed to act as a mechanical damper offering a fundamental layer of protection against brain injury; however, its overall mechanical properties are still rather unexplored. In order to perform micromechanical measurements on the PAC, the tissue must be extracted and characterized while maintaining its native mechanical properties (i.e., avoiding any chemical or physical modification that could alter it). In light of this need, we developed a protocol for the immunofluorescent staining of fresh PAC tissue that does not require any fixation or permeabilization step. This approach will allow researchers to investigate important properties of the anatomy of ex vivo PAC tissue while at the same time offering a platform for the mechanical analysis of this complex material. © 2019 by John Wiley & Sons, Inc.
Basic Protocol 1 : Isolation of fresh rat pia–arachnoid complex tissue
Basic Protocol 2 : Fresh immunofluorescent staining of rat pia–arachnoid complex tissue
Alternate Protocol : Adhesion of pia–arachnoid complex tissue to glass slides for micromechanical characterization
新鲜大鼠pia -蛛网膜复合体组织的分离和免疫荧光染色显微力学特性研究
在这篇文章中,我们描述了一种分离和染色新鲜组织内大鼠脑膜层,或下丘脑-蛛网膜复合体(PAC)的方案。PAC被认为是一个机械阻尼器,为大脑损伤提供了一层基本保护;然而,它的整体力学性能仍然是相当未知的。为了对PAC进行微力学测量,必须在保持其原有机械性能的同时提取和表征组织(即避免任何可能改变其的化学或物理修饰)。鉴于这一需求,我们开发了一种不需要任何固定或渗透步骤的新鲜PAC组织免疫荧光染色方案。这种方法将使研究人员能够研究离体PAC组织的重要解剖特性,同时为这种复杂材料的力学分析提供一个平台。©2019 by John Wiley &基本方案1:分离新鲜大鼠腹腔-蛛网膜复合体组织基本方案2:新鲜大鼠腹腔-蛛网膜复合体组织免疫荧光染色备用方案:将腹腔-蛛网膜复合体组织粘附在玻片上进行微观力学表征
本文章由计算机程序翻译,如有差异,请以英文原文为准。