Decentralized Distributed Deep Learning with Low-Bandwidth Consumption for Smart Constellations

IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE 中国空间科学技术 Pub Date : 2021-10-31 DOI:10.34133/2021/9879246
Qingliang Meng, Meiyu Huang, Yao Xu, Naijin Liu, Xueshuang Xiang
{"title":"Decentralized Distributed Deep Learning with Low-Bandwidth Consumption for Smart Constellations","authors":"Qingliang Meng, Meiyu Huang, Yao Xu, Naijin Liu, Xueshuang Xiang","doi":"10.34133/2021/9879246","DOIUrl":null,"url":null,"abstract":"For the space-based remote sensing system, onboard intelligent processing based on deep learning has become an inevitable trend. To adapt to the dynamic changes of the observation scenes, there is an urgent need to perform distributed deep learning onboard to fully utilize the plentiful real-time sensing data of multiple satellites from a smart constellation. However, the network bandwidth of the smart constellation is very limited. Therefore, it is of great significance to carry out distributed training research in a low-bandwidth environment. This paper proposes a Randomized Decentralized Parallel Stochastic Gradient Descent (RD-PSGD) method for distributed training in a low-bandwidth network. To reduce the communication cost, each node in RD-PSGD just randomly transfers part of the information of the local intelligent model to its neighborhood. We further speed up the algorithm by optimizing the programming of random index generation and parameter extraction. For the first time, we theoretically analyze the convergence property of the proposed RD-PSGD and validate the advantage of this method by simulation experiments on various distributed training tasks for image classification on different benchmark datasets and deep learning network architectures. The results show that RD-PSGD can effectively save the time and bandwidth cost of distributed training and reduce the complexity of parameter selection compared with the TopK-based method. The method proposed in this paper provides a new perspective for the study of onboard intelligent processing, especially for online learning on a smart satellite constellation.","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"18 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国空间科学技术","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.34133/2021/9879246","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 5

Abstract

For the space-based remote sensing system, onboard intelligent processing based on deep learning has become an inevitable trend. To adapt to the dynamic changes of the observation scenes, there is an urgent need to perform distributed deep learning onboard to fully utilize the plentiful real-time sensing data of multiple satellites from a smart constellation. However, the network bandwidth of the smart constellation is very limited. Therefore, it is of great significance to carry out distributed training research in a low-bandwidth environment. This paper proposes a Randomized Decentralized Parallel Stochastic Gradient Descent (RD-PSGD) method for distributed training in a low-bandwidth network. To reduce the communication cost, each node in RD-PSGD just randomly transfers part of the information of the local intelligent model to its neighborhood. We further speed up the algorithm by optimizing the programming of random index generation and parameter extraction. For the first time, we theoretically analyze the convergence property of the proposed RD-PSGD and validate the advantage of this method by simulation experiments on various distributed training tasks for image classification on different benchmark datasets and deep learning network architectures. The results show that RD-PSGD can effectively save the time and bandwidth cost of distributed training and reduce the complexity of parameter selection compared with the TopK-based method. The method proposed in this paper provides a new perspective for the study of onboard intelligent processing, especially for online learning on a smart satellite constellation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向智能星座的低带宽分布式深度学习
对于天基遥感系统而言,基于深度学习的机载智能处理已成为必然趋势。为了适应观测场景的动态变化,迫切需要在星上进行分布式深度学习,以充分利用智能星座中多颗卫星丰富的实时传感数据。然而,智能星座的网络带宽非常有限。因此,在低带宽环境下开展分布式训练研究具有重要意义。针对低带宽网络下的分布式训练,提出了一种随机分散并行随机梯度下降(RD-PSGD)方法。为了降低通信成本,RD-PSGD中的每个节点只是随机地将局部智能模型的部分信息传递给它的邻居。通过优化随机索引生成和参数提取的编程,进一步加快了算法的速度。我们首次从理论上分析了所提出的RD-PSGD的收敛性,并通过在不同基准数据集和深度学习网络架构上的各种分布式图像分类训练任务上的仿真实验验证了该方法的优势。结果表明,与基于topbased的方法相比,RD-PSGD可以有效地节省分布式训练的时间和带宽成本,降低参数选择的复杂性。本文提出的方法为星载智能处理,特别是智能卫星星座的在线学习研究提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
中国空间科学技术
中国空间科学技术 ENGINEERING, AEROSPACE-
CiteScore
1.80
自引率
66.70%
发文量
3141
期刊介绍:
期刊最新文献
Evaluation of Application Effectiveness on Ocean Salinity Satellite RFI Detection Algorithms Safety design for China space station Orbital interception pursuit strategy for random evasion using deep reinforcement learning Integration of Communication and Navigation Technologies Towards LEO-Enabled 6G Networks: A Survey Accuracy Evaluation of Marginalized Unscented Kalman Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1