Tracking U.S. GDP in Real Time

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2019-08-14 DOI:10.18651/ER/3Q19DOEBAE
Jaeheung Bae, Tae-Yong Doh
{"title":"Tracking U.S. GDP in Real Time","authors":"Jaeheung Bae, Tae-Yong Doh","doi":"10.18651/ER/3Q19DOEBAE","DOIUrl":null,"url":null,"abstract":"Measuring the current state of the U.S. economy in real time is an important but challenging task for monetary policymakers. The most comprehensive measure of the state of the economy?real gross domestic product?is available at a relatively low frequency (quarterly) and with a significant delay (one month). To obtain more timely assessments of the state of the economy, the Federal Reserve Bank of Kansas City has developed a GDP tracking model that combines new econometric methods with two conventional approaches to estimating GDP. {{p}} Taeyoung Doh and Jaeheung Bae review the Kansas City Fed model?s underlying details and illustrate its performance by comparing the model?s tracking estimates to those from other real-time tracking models. Their results suggest the Kansas City Fed model provides a useful tool for policymakers by combining estimates and forecasts from factor and accounting-based models.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.18651/ER/3Q19DOEBAE","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

Abstract

Measuring the current state of the U.S. economy in real time is an important but challenging task for monetary policymakers. The most comprehensive measure of the state of the economy?real gross domestic product?is available at a relatively low frequency (quarterly) and with a significant delay (one month). To obtain more timely assessments of the state of the economy, the Federal Reserve Bank of Kansas City has developed a GDP tracking model that combines new econometric methods with two conventional approaches to estimating GDP. {{p}} Taeyoung Doh and Jaeheung Bae review the Kansas City Fed model?s underlying details and illustrate its performance by comparing the model?s tracking estimates to those from other real-time tracking models. Their results suggest the Kansas City Fed model provides a useful tool for policymakers by combining estimates and forecasts from factor and accounting-based models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实时跟踪美国GDP
对货币政策制定者来说,实时衡量美国经济的现状是一项重要但具有挑战性的任务。衡量经济状况最全面的指标是什么?实际国内生产总值?以相对较低的频率(每季度)和明显的延迟(一个月)提供。为了获得对经济状况更及时的评估,堪萨斯城联邦储备银行开发了一种GDP跟踪模型,该模型将新的计量经济学方法与两种传统的估算GDP的方法相结合。{{p}} dotaeyoung和Jaeheung Bae回顾堪萨斯城联储模式?S的底层细节,并通过比较模型来说明其性能?S跟踪估计与其他实时跟踪模型的估计相比较。他们的研究结果表明,堪萨斯城联邦储备银行的模型结合了来自因子模型和基于会计的模型的估计和预测,为政策制定者提供了一个有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1