{"title":"A comparison of power-analysis-resistant digital circuits","authors":"E. Menendez, K. Mai","doi":"10.1109/HST.2010.5513112","DOIUrl":null,"url":null,"abstract":"Power analysis attacks are a common and effective method of defeating cryptographic systems. Many power-analysis-resistant digital circuit techniques have been previously proposed, leaving the circuit designer a myriad of choices without a simple way to compare and contrast the strengths and weaknesses of each technique. In this paper, we compare four promising power-analysis-resistant digital logic styles against a standard CMOS baseline. By comparing these techniques side by side in a consistent manner we present a clearer picture of the advantages and drawbacks of each. Results are presented for logic gate area, energy consumption, and power-analysis resistance. We also present a novel test structure suitable for measuring power-analysis resistance of individual logic gates in actual silicon.","PeriodicalId":6367,"journal":{"name":"2010 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HST.2010.5513112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Power analysis attacks are a common and effective method of defeating cryptographic systems. Many power-analysis-resistant digital circuit techniques have been previously proposed, leaving the circuit designer a myriad of choices without a simple way to compare and contrast the strengths and weaknesses of each technique. In this paper, we compare four promising power-analysis-resistant digital logic styles against a standard CMOS baseline. By comparing these techniques side by side in a consistent manner we present a clearer picture of the advantages and drawbacks of each. Results are presented for logic gate area, energy consumption, and power-analysis resistance. We also present a novel test structure suitable for measuring power-analysis resistance of individual logic gates in actual silicon.