Bitwise Neural Networks for Efficient Single-Channel Source Separation

Minje Kim, P. Smaragdis
{"title":"Bitwise Neural Networks for Efficient Single-Channel Source Separation","authors":"Minje Kim, P. Smaragdis","doi":"10.1109/ICASSP.2018.8461824","DOIUrl":null,"url":null,"abstract":"We present Bitwise Neural Networks (BNN) as an efficient hardware-friendly solution to single-channel source separation tasks in resource-constrained environments. In the proposed BNN system, we replace all the real-valued operations during the feedforward process of a Deep Neural Network (DNN) with bitwise arithmetic (e.g. the XNOR operation between bipolar binaries in place of multiplications). Thanks to the fully bitwise run-time operations, the BNN system can serve as an alternative solution where efficient real-time processing is critical, for example real-time speech enhancement in embedded systems. Furthermore, we also propose a binarization scheme to convert the input signals into bit strings so that the BNN parameters learn the Boolean mapping between input binarized mixture signals and their target Ideal Binary Masks (IBM). Experiments on the single-channel speech denoising tasks show that the efficient BNN-based source separation system works well with an acceptable performance loss compared to a comprehensive real-valued network, while consuming a minimal amount of resources.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"30 1","pages":"701-705"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8461824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We present Bitwise Neural Networks (BNN) as an efficient hardware-friendly solution to single-channel source separation tasks in resource-constrained environments. In the proposed BNN system, we replace all the real-valued operations during the feedforward process of a Deep Neural Network (DNN) with bitwise arithmetic (e.g. the XNOR operation between bipolar binaries in place of multiplications). Thanks to the fully bitwise run-time operations, the BNN system can serve as an alternative solution where efficient real-time processing is critical, for example real-time speech enhancement in embedded systems. Furthermore, we also propose a binarization scheme to convert the input signals into bit strings so that the BNN parameters learn the Boolean mapping between input binarized mixture signals and their target Ideal Binary Masks (IBM). Experiments on the single-channel speech denoising tasks show that the efficient BNN-based source separation system works well with an acceptable performance loss compared to a comprehensive real-valued network, while consuming a minimal amount of resources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效单通道源分离的位神经网络
我们提出了位神经网络(BNN)作为资源受限环境下单通道源分离任务的有效硬件友好解决方案。在提出的BNN系统中,我们用位算术取代了深度神经网络(DNN)前馈过程中的所有实值运算(例如,双极二进制之间的XNOR运算代替乘法)。由于完全按位运行时操作,BNN系统可以作为高效实时处理至关重要的替代解决方案,例如嵌入式系统中的实时语音增强。此外,我们还提出了一种二值化方案,将输入信号转换为位串,使BNN参数学习输入二值化混合信号与其目标理想二进制掩码(IBM)之间的布尔映射。对单通道语音去噪任务的实验表明,与综合实值网络相比,基于bnn的高效源分离系统性能良好,性能损失可接受,同时消耗的资源最少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduced Dimension Minimum BER PSK Precoding for Constrained Transmit Signals in Massive MIMO Low Complexity Joint RDO of Prediction Units Couples for HEVC Intra Coding Non-Native Children Speech Recognition Through Transfer Learning Synthesis of Images by Two-Stage Generative Adversarial Networks Statistical T+2d Subband Modelling for Crowd Counting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1