Partially one-sided semiparametric inference for trending persistent and antipersistent processes

IF 2 Q2 ECONOMICS Econometrics and Statistics Pub Date : 2024-04-01 DOI:10.1016/j.ecosta.2021.12.007
Karim M. Abadir , Walter Distaso , Liudas Giraitis
{"title":"Partially one-sided semiparametric inference for trending persistent and antipersistent processes","authors":"Karim M. Abadir ,&nbsp;Walter Distaso ,&nbsp;Liudas Giraitis","doi":"10.1016/j.ecosta.2021.12.007","DOIUrl":null,"url":null,"abstract":"<div><p>Hypothesis testing in models allowing for trending processes that are possibly nonstationary and non-Gaussian is considered. Using semiparametric estimators, joint hypothesis testing for these processes is developed, taking into account the one-sided nature of typical hypotheses on the persistence parameter in order to gain power. The results are applicable for a wide class of processes and are easy to implement. They are illustrated with an application to the dynamics of GDP.</p></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"30 ","pages":"Pages 1-14"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306221001611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Hypothesis testing in models allowing for trending processes that are possibly nonstationary and non-Gaussian is considered. Using semiparametric estimators, joint hypothesis testing for these processes is developed, taking into account the one-sided nature of typical hypotheses on the persistence parameter in order to gain power. The results are applicable for a wide class of processes and are easy to implement. They are illustrated with an application to the dynamics of GDP.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
持续和反持续过程趋势的部分单边半参数推理
研究考虑了在可能是非平稳和非高斯的趋势过程模型中进行假设检验的问题。考虑到关于持久性参数的典型假设的片面性,利用半参数估计器开发了针对这些过程的联合假设检验,以获得更强的能力。这些结果适用于多种过程,而且易于实现。以国内生产总值的动态应用为例进行说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
期刊最新文献
Editorial Board Empirical best predictors under multivariate Fay-Herriot models and their numerical approximation Forecasting with Machine Learning methods and multiple large datasets[formula omitted] Specification tests for normal/gamma and stable/gamma stochastic frontier models based on empirical transforms A Bayesian flexible model for testing Granger causality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1