Long-Range ACEO Phenomena in Microfluidic Channel

Surfaces Pub Date : 2023-04-20 DOI:10.3390/surfaces6020011
D. Dutta, K. Smith, X. Palmer
{"title":"Long-Range ACEO Phenomena in Microfluidic Channel","authors":"D. Dutta, K. Smith, X. Palmer","doi":"10.3390/surfaces6020011","DOIUrl":null,"url":null,"abstract":"Microfluidic devices are increasingly utilized in numerous industries, including that of medicine, for their abilities to pump and mix fluid at a microscale. Within these devices, microchannels paired with microelectrodes enable the mixing and transportation of ionized fluid. The ionization process charges the microchannel and manipulates the fluid with an electric field. Although complex in operation at the microscale, microchannels within microfluidic devices are easy to produce and economical. This paper uses simulations to convey helpful insights into the analysis of electrokinetic microfluidic device phenomena. The simulations in this paper use the Navier–Stokes and Poisson Nernst–Planck equations solved using COMSOL to determine the maximum attainable fluid velocity with an electric potential applied to the microchannel and the most suitable frequency or voltage to use for transporting the fluid. Alternating current electroosmosis (ACEO) directs and provides velocity to the ionized fluid. ACEO can also mix the fluid at low frequencies for the purpose of dispersing particles. DC electroosmosis (DCEO) applies voltage along the microchannel to create an electric field that ionizes fluid within the microchannel, making it a cost-effective method for transporting fluid. This paper explores a method for an alternate efficient utilization of microfluidic devices for efficient mixing and transportation of ionized fluid and analyzes the electrokinetic phenomena through simulations using the Navier–Stokes and Poisson Nernst–Planck equations. The results provide insights into the parameters at play for transporting the fluid using alternating current electroosmosis (ACEO) and DC electroosmosis (DCEO).","PeriodicalId":22129,"journal":{"name":"Surfaces","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/surfaces6020011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microfluidic devices are increasingly utilized in numerous industries, including that of medicine, for their abilities to pump and mix fluid at a microscale. Within these devices, microchannels paired with microelectrodes enable the mixing and transportation of ionized fluid. The ionization process charges the microchannel and manipulates the fluid with an electric field. Although complex in operation at the microscale, microchannels within microfluidic devices are easy to produce and economical. This paper uses simulations to convey helpful insights into the analysis of electrokinetic microfluidic device phenomena. The simulations in this paper use the Navier–Stokes and Poisson Nernst–Planck equations solved using COMSOL to determine the maximum attainable fluid velocity with an electric potential applied to the microchannel and the most suitable frequency or voltage to use for transporting the fluid. Alternating current electroosmosis (ACEO) directs and provides velocity to the ionized fluid. ACEO can also mix the fluid at low frequencies for the purpose of dispersing particles. DC electroosmosis (DCEO) applies voltage along the microchannel to create an electric field that ionizes fluid within the microchannel, making it a cost-effective method for transporting fluid. This paper explores a method for an alternate efficient utilization of microfluidic devices for efficient mixing and transportation of ionized fluid and analyzes the electrokinetic phenomena through simulations using the Navier–Stokes and Poisson Nernst–Planck equations. The results provide insights into the parameters at play for transporting the fluid using alternating current electroosmosis (ACEO) and DC electroosmosis (DCEO).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微流控通道中的远距离ACEO现象
微流体装置越来越多地应用于包括医药在内的许多行业,因为它们能够在微观尺度上泵送和混合流体。在这些装置中,微通道与微电极配对,使电离流体的混合和运输成为可能。电离过程给微通道充电,并用电场操纵流体。微流控装置内的微通道虽然在微观尺度上操作复杂,但易于制造且经济。本文采用仿真方法对电动力微流控装置现象的分析提供了有益的见解。本文的模拟使用COMSOL求解的Navier-Stokes和泊松能思-普朗克方程来确定施加在微通道上的电势以及用于输送流体的最合适频率或电压时可达到的最大流体速度。交流电渗透(ACEO)指导并提供电离流体的速度。ACEO还可以在低频率下混合流体以分散颗粒。直流电渗透(DCEO)沿着微通道施加电压,产生电场,使微通道内的流体电离,使其成为一种经济有效的流体输送方法。本文探讨了一种利用微流控装置实现电离流体高效混合和输运的方法,并利用Navier-Stokes方程和泊松能思-普朗克方程对电动力学现象进行了模拟分析。研究结果为交流电渗透(ACEO)和直流电渗透(DCEO)输送流体的参数提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊最新文献
Applicability of Fluorine Gas Surface Treatment to Control Liquid Sodium Wettability Evaluation of Photocatalytic Hydrogen Evolution in Zr-Doped TiO2 Thin Films Evaluation of the Feasibility of the Prediction of the Surface Morphologiesof AWJ-Milled Pockets by Statistical Methods Based on Multiple Roughness Indicators Formation of Organic Monolayers on KF-Etched Si Surfaces Metal–Perovskite Interfacial Engineering to Boost Activity in Heterogeneous Catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1