High concentration of calcium represses osteoblast differentiation in C2C12 cells

Y. J. Lee, Younho Han
{"title":"High concentration of calcium represses osteoblast differentiation in C2C12 cells","authors":"Y. J. Lee, Younho Han","doi":"10.11620/IJOB.2020.45.4.162","DOIUrl":null,"url":null,"abstract":"Calcium is the most abundant stored mineral in the human body and is especially vital for bone health; thus, calcium deficiency can cause bone-related diseases, such as osteopenia and osteoporosis. However, a high concentration of serum calcium, which is commonly known as hypercalcemia, can also lead to weakened bones and, in severe cases, osteosarcoma. Therefore, it is necessary to maintain the concentration of calcium that is appropriate for bone biology. In the present study, we aimed to elucidate the effects of high concentration of calcium, approximately 2 folds the normal calcium level, on osteoblast differentiation. The CaCl2 treatment showed dose-dependent suppression of the alkaline phosphatase activity and mineralized nodule formation. Calcium showed cytotoxicity at an extremely high concentration, but a moderately high concentration of calcium that results in inhibitory effects to osteoblast differentiation showed no signs of cytotoxicity. We also confirmed that the CaCl2 treatment repressed the mRNA expression and protein abundance of various osteogenic genes and transcriptional factors. Considered together, these results indicate that a high concentration of calcium negatively regulates the osteoblast differentiation of C2C12 cells.","PeriodicalId":14180,"journal":{"name":"International Journal of Oral Biology","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Oral Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11620/IJOB.2020.45.4.162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Calcium is the most abundant stored mineral in the human body and is especially vital for bone health; thus, calcium deficiency can cause bone-related diseases, such as osteopenia and osteoporosis. However, a high concentration of serum calcium, which is commonly known as hypercalcemia, can also lead to weakened bones and, in severe cases, osteosarcoma. Therefore, it is necessary to maintain the concentration of calcium that is appropriate for bone biology. In the present study, we aimed to elucidate the effects of high concentration of calcium, approximately 2 folds the normal calcium level, on osteoblast differentiation. The CaCl2 treatment showed dose-dependent suppression of the alkaline phosphatase activity and mineralized nodule formation. Calcium showed cytotoxicity at an extremely high concentration, but a moderately high concentration of calcium that results in inhibitory effects to osteoblast differentiation showed no signs of cytotoxicity. We also confirmed that the CaCl2 treatment repressed the mRNA expression and protein abundance of various osteogenic genes and transcriptional factors. Considered together, these results indicate that a high concentration of calcium negatively regulates the osteoblast differentiation of C2C12 cells.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高浓度钙抑制C2C12细胞成骨细胞分化
钙是人体内储量最丰富的矿物质,对骨骼健康尤其重要;因此,缺钙会导致骨相关疾病,如骨质减少和骨质疏松症。然而,血清钙浓度过高,也就是通常所说的高钙血症,也会导致骨骼变弱,在严重的情况下,还会导致骨肉瘤。因此,有必要维持适合骨骼生物学的钙浓度。在本研究中,我们旨在阐明高浓度钙(约为正常钙水平的2倍)对成骨细胞分化的影响。CaCl2处理对碱性磷酸酶活性和矿化结节形成的抑制呈剂量依赖性。钙在极高浓度下表现出细胞毒性,而中等高浓度的钙对成骨细胞分化有抑制作用,但没有细胞毒性的迹象。我们还证实,CaCl2处理抑制了各种成骨基因和转录因子的mRNA表达和蛋白丰度。综上所述,这些结果表明高浓度钙对C2C12细胞成骨分化具有负向调控作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A meta-analysis of microbiota implicated in periimplantitis Trends in the rapid detection of infective oral diseases Long-term exposure to gefitinib differentially regulates the endosomal sorting complex required for transport machinery, which accelerates the metastatic potential of oral squamous cell carcinoma cells Naringin enhances the migration and osteogenic differentiation of human dental pulp stem cells Salty taste: the paradoxical taste
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1