I. V. Lisnevskaya, V. Butova, Mikhail I. Perebeinos, K. V. Myagkaya, A. Letovaltsev, V. Shapovalov, H. Zahran, I. Yahia, A. Soldatov
{"title":"On the Possibility of Synthesizing Bimno3 at Ambient Pressure Using Low-Temperature Methods","authors":"I. V. Lisnevskaya, V. Butova, Mikhail I. Perebeinos, K. V. Myagkaya, A. Letovaltsev, V. Shapovalov, H. Zahran, I. Yahia, A. Soldatov","doi":"10.1080/02603594.2019.1643331","DOIUrl":null,"url":null,"abstract":"BiMnO3 exhibit multiferroic properties, which attract much attention due to numerous potential applications. The most well-investigated and traditional techniques for synthesizing this material include high-pressure and high-temperature treatment. In this way, soft chemistry synthesis of BiMnO3 is desirable. Even though the formation of BiMnO3 at ambient pressure is not possible according to the phase diagram, many scientific groups are focused on solving this problem. In the present work, we have tested four soft chemistry routes, namely hydrothermal route, two gel methods, and coprecipitation for synthesizing BiMnO3 from Cl– and NO3–-containing solutions at ambient pressure in the temperature range of 200–800°C, and none resulted in the formation of BiMnO3. The experiment showed that under hydrothermal conditions manganese and bismuth oxides remain unreacted, and the other tested methods produce Bi2Mn4O10 and Bi12MnO20 instead. The formation of Bi2Mn4O10 and Bi12MnO20 from Cl–-containing solutions occurs with BiOCl being formed as an intermediate phase. Graphical Abstract","PeriodicalId":10481,"journal":{"name":"Comments on Inorganic Chemistry","volume":"13 1","pages":"270 - 286"},"PeriodicalIF":3.8000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comments on Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/02603594.2019.1643331","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 5
Abstract
BiMnO3 exhibit multiferroic properties, which attract much attention due to numerous potential applications. The most well-investigated and traditional techniques for synthesizing this material include high-pressure and high-temperature treatment. In this way, soft chemistry synthesis of BiMnO3 is desirable. Even though the formation of BiMnO3 at ambient pressure is not possible according to the phase diagram, many scientific groups are focused on solving this problem. In the present work, we have tested four soft chemistry routes, namely hydrothermal route, two gel methods, and coprecipitation for synthesizing BiMnO3 from Cl– and NO3–-containing solutions at ambient pressure in the temperature range of 200–800°C, and none resulted in the formation of BiMnO3. The experiment showed that under hydrothermal conditions manganese and bismuth oxides remain unreacted, and the other tested methods produce Bi2Mn4O10 and Bi12MnO20 instead. The formation of Bi2Mn4O10 and Bi12MnO20 from Cl–-containing solutions occurs with BiOCl being formed as an intermediate phase. Graphical Abstract
期刊介绍:
Comments on Inorganic Chemistry is intended as a vehicle for authoritatively written critical discussions of inorganic chemistry research. We publish focused articles of any length that critique or comment upon new concepts, or which introduce new interpretations or developments of long-standing concepts. “Comments” may contain critical discussions of previously published work, or original research that critiques existing concepts or introduces novel concepts.
Through the medium of “comments,” the Editors encourage authors in any area of inorganic chemistry - synthesis, structure, spectroscopy, kinetics and mechanisms, theory - to write about their interests in a manner that is both personal and pedagogical. Comments is an excellent platform for younger inorganic chemists whose research is not yet widely known to describe their work, and add to the spectrum of Comments’ author profiles, which includes many well-established inorganic chemists.