Impact of asymmetric zeta-potential on natural convection flow in a vertical microannulus with electroosmotic and Joule heating effects

M. Oni, B. Jha
{"title":"Impact of asymmetric zeta-potential on natural convection flow in a vertical microannulus with electroosmotic and Joule heating effects","authors":"M. Oni, B. Jha","doi":"10.1177/23977914221103995","DOIUrl":null,"url":null,"abstract":"Analytical solutions of temperature distributions and flow formation of joint buoyancy and electroosmotic flow in a vertical microtube formed by two concentric microcylinders are presented. The central equations describing flow formations and thermal energy are offered and solved in closed-form in terms of modified Bessel’s function of first and second kinds. These solutions have significant application in predicting and analyzing flow formation and thermal behavior of Newtonian fluids in micropumps and microchips. Based on the exact solutions obtained, the effects of flow parameters are clearly explained with the use of line graphs. Based on the simulation of results using MATLAB, it is found that fluid temperature distributions and fluid velocity in the vertical microannulus could be enhanced by increasing the radius ratio of the concentric microcylinders.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914221103995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Analytical solutions of temperature distributions and flow formation of joint buoyancy and electroosmotic flow in a vertical microtube formed by two concentric microcylinders are presented. The central equations describing flow formations and thermal energy are offered and solved in closed-form in terms of modified Bessel’s function of first and second kinds. These solutions have significant application in predicting and analyzing flow formation and thermal behavior of Newtonian fluids in micropumps and microchips. Based on the exact solutions obtained, the effects of flow parameters are clearly explained with the use of line graphs. Based on the simulation of results using MATLAB, it is found that fluid temperature distributions and fluid velocity in the vertical microannulus could be enhanced by increasing the radius ratio of the concentric microcylinders.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不对称ζ势对具有电渗透和焦耳热效应的垂直微环内自然对流的影响
给出了由两个同心微柱组成的垂直微管内联合浮力和电渗透流动的温度分布和流动形成的解析解。给出了描述流体形成和热能的中心方程,并以一类和二类修正贝塞尔函数的封闭形式进行了求解。这些解在预测和分析微泵和微芯片中牛顿流体的形成和热行为方面具有重要的应用价值。在得到精确解的基础上,用折线图清楚地说明了流动参数的影响。基于MATLAB仿真结果发现,增大同心微柱半径比可以增强垂直微环空内的流体温度分布和流体速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.00
自引率
1.70%
发文量
24
期刊介绍: Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.
期刊最新文献
Performance of carbon nanotubes (CNTs) on the development of radiating hybrid nanofluid flow through an stretching cylinder Optimizing compressive mechanical properties and water absorption of polycaprolactone/nano-hydroxyapatite composite scaffolds by 3D printing based on fused deposition modeling Effectiveness of silver-magnesium oxide-water hybrid nanofluid in Couette channel Optimization and fuzzy model for evaluation of mechanical and tribological properties of Al-CNT-Si3N4 based nano and hybrid composites Adsorption investigation of a composite of metal-organic framework and polyethylene oxide hydrogel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1